ANURAG ENGINEERING COLLEGE

(An Autonomous Institution)

M.Tech I Year I Sem

ADVANCED DATA STRUCTURES AND ALGORITHMS LAB

Course Objectives:

- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction.

Sample Problems on Data structures:

- 1. Write Java programs that use both recursive and non-recursive functions for implementing the following searching methods:
- a) Linear search b) Binary search
- 2. Write Java programs to implement the following using arrays and linked lists
- a) List ADT
- 3. Write Java programs to implement the following using an array.
- a) Stack ADT b) Queue ADT
- 4. Write a Java program that reads an infix expression and converts the expression to postfix form. (Use stack ADT).
- 5. Write a Java program to implement circular queue ADT using an array.
- 6. Write a Java program that uses both a stack and a queue to test whether the given string is a palindrome or not.
- 7. Write Java programs to implement the following using a singly linked list.
- a) Stack ADT b) Queue ADT
- 8. Write Java programs to implement the deque (double ended queue) ADT using
- a) Array b) Singly linked list c) Doubly linked list.
- 9. Write a Java program to implement priority queue ADT.
- 10. Write a Java program to perform the following operations:
- a) Construct a binary search tree of elements.
- b) Search for a key element in the above binary search tree.
- c) Delete an element from the above binary search tree.
- 11. Write a Java program to implement all the functions of a dictionary (ADT) using Hashing.
- 12. Write a Java program to implement Dijkstra's algorithm for Single source shortest path problem.
- 13. Write Java programs that use recursive and non-recursive functions to traverse the given binary tree in

- a) Preorder b) Inorder c) Postorder.
- 14. Write Java programs for the implementation of bfs and dfs for a given graph.
- 15. Write Java programs for implementing the following sorting methods:
 - a) Bubble sort d) Merge sort g) Binary tree sort
 - b) Insertion sort e) Heap sort
 - c) Quick sort f) Radix sort
- 16. Write a Java program to perform the following operations:
 - a) Insertion into a B-tree b) Searching in a B-tree
- 17. Write a Java program that implements Kruskal's algorithm to generate minimum cost spanning tree.
- 18. Write a Java program that implements KMP algorithm for pattern matching.

Course Outcomes:

- Attains the knowledge on implementing linear search, binary search, stacks, queues.
- Gain the knowledge on implementing sorting techniques, B-trees.

REFERENCE BOOKS:

- 1. Data Structures and Algorithms in java, 3rd edition, A.Drozdek, Cengage Learning.
- 2. Data Structures with Java, J.R.Hubbard, 2nd edition, Schaum's Outlines, TMH.
- 3. Data Structures and algorithms in Java, 2nd Edition, R.Lafore, Pearson Education.
- 4. Data Structures using Java, D.S.Malik and P.S. Nair, Cengage Learning.
- 5. Data structures, Algorithms and Applications in java, 2nd Edition, S.Sahani, Universities Press.
- 6. Design and Analysis of Algorithms, P.H.Dave and H.B.Dave, Pearson education.
- 7. Data Structures and java collections frame work, W.J.Collins, Mc Graw Hill.
- 8. Java: the complete reference, 7th editon, Herbert Schildt, TMH.
- 9. Java for Programmers, P.J.Deitel and H.M.Deitel, Pearson education / Java: How to Program P.J.Deitel and H.M.Deitel, 8th edition, PHI.
- 10. Java Programming, D.S.Malik, Cengage Learning.
- 11. A Practical Guide to Data Structures and Algorithms using Java, S.Goldman & K.Goldman, Chapman & Hall/CRC, Taylor & Francis Group.

(Note: Use packages like java.io, java.util, etc)