Department of Electronics & Communication and Engineering

Course File

ELECRONIC DEVICES AND CIRCUITS

(Course Code: EC205ES)

I B.Tech II Semester

2023-24

Mr.L.Hari Prasad Assistant Professor

ELECRONIC DEVICES AND CIRCUITS

Check List

S.No	Name of the Format	Page No.
1	Syllabus	3
2	Timetable	5
3	Program Educational Objectives	8
4	Program Outcomes	9
5	Course Objectives	11
6	Course Outcomes	11
7	Guidelines to study the course	12
8	Course Schedule	13
9	Course Plan	14
10	Unit Plan	17
11	Lesson Plan	17
12	Assignment Sheets	41
13	Tutorial Sheets	46
14	Evaluation Strategy	51
15	Course completion status	52
16	Assessment in relation to CO's and CO's	53
17	Mappings of CO's and PO's	53
18	Rubric for course	54
19	Mid-I and Mid-II question papers	55
20	Mid-I& Mid-IImark	57
21	Sample answer scripts and Assignments	60
22	Course materials like Notes, PPT's, etc.	61
23	Course Completion Certificate	63

(Highlighted parts has to be revised by individual faculty)

ELECRONIC DEVICES AND CIRCUITS

Int. Marks:40 Ext. Marks:60 Total Marks:100

(Common to ECE, CSE, IT& AIML)

Course Code: EC205ES

UNIT —I: Diodes: Diode - Static and Dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances, V-I Characteristics of Diode, Diode as a switch-switching times.

UNIT –**II:**Diode Applications: Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers with Capacitive and Inductive Filters,

Clippers and Clampers: Clippers-Clipping at two independent levels, Clamper-Clamping Circuit Theorem, Clamping Operation, Types of Clampers.

UNIT - III: Bipolar Junction Transistor (BJT): Principle of Operation, Common Emitter, Common Base and Common Collector Configurations, Transistor as a switch, switching times.

UNIT -IV: Junction Field Effect Transistor (FET): Construction, Principle of Operation, Pinch-Off Voltage, Volt-Ampere Characteristic, Comparison of BJT and FET, FET as Voltage Variable Resistor, MOSFET, MOSTET as a capacitor.

UNIT –**V**: Special Purpose Devices: Zener Diode - Characteristics, Zener diode as Voltage Regulator, Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode, Photo diode, Solar cell, LED, Schottky diode.

Text Books:

- 1. Electronic Devices and Circuits J.Millman, C.C.Halkias, and SatyabrathaJit Tata McGraw Hill, 2nd Ed.,2007.
- 2. Electronic Devices and Circuits R.L. Boylestad and Louis Nashelsky, Pearson/Prentice Hall, 9thEdition, 2006.
- 3. Introduction to Electronic Devices and Circuits- Rober T. PaynterPE

Reference Books:

- 1. Electronic Devices and Circuits T.F. Bogart Jr., J.S.Beasley and G.Rico, Pearson Education, 6th edition, 2004.
- 2. Principles of Electronic Circuits S.G.Burns and P.R.Bond, Galgotia Publications, 2nd Edn..,1998.
- 3. Microelectronics Millman and Grabel, Tata McGraw Hill,1988. 4. Electronic Devices and Circuits Dr. K. LalKishore,B.S.

ANURAGENGINEERINGCOLLEGE

A an anthagiri (V&M), Suryapet (Dt)-508206A. PPh: 08683-272555, 272456, 272221

AcademicYear2023-24

IB. Tech II Semester Consolidated Time Table

w.e.f02.05-2024

B. recilio		I	II	BREAK	III	BREAK	IV	v	BREAK	VI	VII
DAY /PERIOD	Branch	09.30 -	10.20 -		11.20 -	12.10 -	12.50 -	01.35 -		02.30-	15-
/I ERIOD		10:20	11.10	11.20	12.10	12.50	01.35	02.20	02.30	3.03.15	04.00
	ECE		CA	.EG			ODE	BEE		EDC	Games/Libarary
MON	CSE-A	ODE	AP		ESE	LB UR		AP		ODE	EDC
	CSE-B	AP	EDC		ES	NE	ODE		ELCSLAB		
	CSE-C	EDC	ODE		AP	CA	ODE	AP		EDC	ESE
	IT	ODE	BEE		EC	HK	EDC	ODE		BEE	EC
	AIML-A	EDC	ODE		AP		ESE		AP/I	EWSLAB	
	AIML-B	ESE	EDC		ODE		AP	EDC		ODE	AP
	ECE		CA	.EG			EC	EDC		BEE	ODE
	CSE-A	EDC	AP		ODE		ESE		AP/I	EWSLAB	
TUE	CSE-B		AP/EWS	SLAB			AP	ODE		EDC	ESE
	CSE-C	ODE	AP		EDC		ES	AP		ESE	EDC
	IT	EDC	ODE		BEE		EC		EC/	BEELAB	
	AIML-A	AP	ODE		EDC		PYTL	AP		ODE	ESE
	AIML-B	ES	CRE		ODE		EDC	ESE		AP	Games/Libarary
	ECE		EC/BEE	ELAB		T D	BEE	ODE		EDC	EC
	CSE-A	AP	CRE		EDC	LB UR	ODE	PYTL		ES	Games/Libarary
WED	CSE-B	AP	EDC		ODE	NE	ESE	AP		ODE	EDC
	CSE-C	CRE	AP		ODE	CA HK	ESE		AP/I	EWSLAB	
	IT	BEE	EC		EDC	пк	EDC	BEE		ODE	Games/Libarary
	AIML-A		ELCS	LAB			ES	AP		ODE	ES
	AIML-B	EDC	ODE		AP		CRE		E	LCSLAB	
	ECE	EDC	ODE		BEE	LB	EC	ODE		EC	BEE
	CSE-A	ESE	AP		EDC	UR	CRE	AP		ES	ODE
THU	CSE-B	ESE	AP		ODE	NE	ES		AP/I	EWSLAB	T
	CSE-C		ELCS			CA HK	PYTL	ODE		AP	EDC
	IT		EC/BEF	ELAB			BEE	EC		ODE	COI
	AIML-A	ODE	EDC		AP		EDC	AP		ESE	CRE
	AIML-B		AP/EWS	SLAB			PYTL	ODE		AP	ESE
	ECE	COI	EC		ODE	LB	EDC			BEELAB	
	CSE-A	ESE	AP		EDC	UR	ODE		AP/I	EWSLAB	T
FRI	CSE-B	EDC	AP		ESE	NE CA	AP	ODE		EDC	CRE
	CSE-C	ODE	ES		EDC	HK	CRE	AP		ESE	Games/Libarary
	IT			.EG			BEE	EDC		EC	ODE
	AIML-A	EDC	ODE		ESE		ES	AP		CRE	Games/Libarary
	AIML-B	COL	AP/EWS	SLAB	FG		ESE	ODE		AP	EDC
	ECE	COI	BEE		EC	LB	EDC	BEE		ODE	EC
SAT	CSE-A	ESE	AP		EDC	UR	ODE	ODE	<u>E</u>	LCSLAB	Compa/Library
	CSE-B	ESE	CRE	Y A D	AP	NE CA	EDC	ODE		PYTL	Games/Libarary
	CSE-C	FC	AP/EWS	LAB	EDG	HK	ESE	ODE		EDC	AP
	IT	EC	ODE		EDC	-	COI	-	A TD /T	CAEG	
	AIML-A	EDC	AP		ODE	-	ESE	TROPE	AP/I	EWSLAB	EDC
	AIML-B	AP	ODE		EDC		ES	ESE		AP	EDC

TIME TABLE

I B.Tech. II Semester –ECE(A SEC)

Day/Hour	9.30-	10.20-	11.20-	12.10-	12.50-	1.35-	2.30-3.15	3.15-4.00
	10.20	11.10	12.10	12.50	1.35	2.20		
Monday							EDC	
Tuesday						EDC		
Wednesday							EDC	
Thursday	EDC							
Friday								
Saturday				EDC				

Vision of the Institute

To be a premier Institute in the country and region for the study of Engineering, Technology and Management by maintaining high academic standards which promotes the analytical thinking and independent judgment among the prime stakeholders, enabling them to function responsibly in the globalized society.

Mission of the Institute

To be a world-class Institute, achieving excellence in teaching, research and consultancy in cutting-edge Technologies and be in the service of society in promoting continued education in Engineering, Technology and Management.

Quality Policy

To ensure high standards in imparting professional education by providing world-class infrastructure, topquality-faculty and decent work culture to sculpt the students into Socially Responsible Professionals through creative team-work, innovation and research.

Vision of the Department

To generate competent professionals to become part of the Industry and Research Organizations at the National and International levels.

Mission of the Department

- To train the students to have in-depth knowledge of the subjects in the field of Computer Science and Engineering.
- To train the students with leadership qualities, team work skills, commitment and ethics thereby making them develop confidence for R & D activities and for placement in multinational and national.

Program Educational Objectives (B.Tech. –ECE)

Graduates will be able to

- PEO 1: Graduates will have broad scientific and engineering knowledge to formulate, analyse and resolve engineering issues in real world.
- PEO 2: Graduates will have the skills they need for a successful career in Electronics & Communications and related fields that meet the needs of the country and businesses.
- PEO 3: Graduates will function effectively in workplace with demonstrable attributes like leadership, lifelong learning, and teamwork in order to meet the requirements of society.

Program Outcomes (B.Tech. –ECE)

At the end of the Program, a graduate will have the ability to

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3:Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE OBJECTIVES

On completion of this Subject/Course the student shall be able to:

S.No	Objectives
1	To introduce components such as diodes,.
2	To know the applications of Diode.
3	To understand the characteristics of the BJT.
4	To understand the characteristics of the JFET and MOSFET.
5	To understand the characteristics of the special purpose devices.

COURSE OUTCOMES

The expected outcomes of the Course/Subject are:

S.No	Outcomes
1.	Analyze the PN Junction diode operation and its characteristics
2.	Know the applications of Diode such as clippers and clampers.
3.	Analyze the characteristics of BJT.
4.	Analyze the characteristics of FET.
5.	Understand the concept of special purpose devices

Signature of faculty

Note: Please refer to Bloom's Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

GUIDELINES TO STUDY THE COURSE / SUBJECT

Course Design and Delivery System (CDD):

- The Course syllabus is written into number of learning objectives and outcomes.
- Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and grading method.
- The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by various methods and the students will be given guidance to refer to the text books, reference books, journals, etc.

The faculty be able to -

- Understand the principles of Learning
- Understand the psychology of students
- Develop instructional objectives for a given topic
- Prepare course, unit and lesson plans
- Understand different methods of teaching and learning
- Use appropriate teaching and learning aids
- Plan and deliver lectures effectively
- Provide feedback to students using various methods of Assessments and tools of Evaluation
- Act as a guide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD	Signature of faculty
Date:	Date:

COURSE SCHEDULE (I ECE)

The Schedule for the whole Course / Subject is:

S. No.	Description	Duration	n (Date)	Total No.
D. 110.	-	From	То	of Periods
1.	Unit-I: Diodes Diode - Static and Dynamic resistances, Equivalent circuit, Diffusion and Transition Capacitances, V-I Characteristics of Diode, Diode as a switch-switching times.	5.2.2024	24.2.2024	15
	Unit-II: Diode Applications			
	Rectifier - Half Wave Rectifier, Full Wave Rectifier,			
	Bridge Rectifier, Rectifiers with Capacitive and			
2.	Inductive Filters	26.2.2024	19.3.2024	15
	Clippers and Clampers: Clippers-Clipping at two			
	independent levels, Clamper-Clamping Circuit			
	Theorem, Clamping Operation, Types of Clampers.			
	Unit-III: Bipolar Junction Transistor (BJT)			
3.	Principle of Operation, Common Emitter, Common	21 2 202 1	18.4.2024	7
	Base and Common Collector Configurations, Transistor	21.3.2024		
	as a switch, switching times.			
	Unit-IV:Junction Field Effect Transistor (FET)			
	Construction, Principle of Operation, Pinch-Off	19.4.2024	6.5.2024	10
4.	Voltage, Volt-Ampere Characteristic, Comparison of			
	BJT and FET, FET as Voltage Variable Resistor,	17.1.2021		
	MOSFET, MOSTET as a capacitor.			
	Unit-V: Special Purpose Devices			
	Zener Diode - Characteristics, Zener diode as Voltage			
E	Regulator, Principle of Operation - SCR, Tunnel diode,			10
5.	UJT, Varactor Diode, Photo diode, Solar cell, LED,	7.5.2024	12.6.2024	
	Schottky diode.			

Total No. of Instructional periods available for the course: 63 Hours + 2hr (Mid-I Exam)

SCHEDULE OF INSTRUCTIONS - COURSE PLAN

Unit No.	Lesson No.	Date	No. of Periods	Topics / Sub-Topics	Objectives & Outcomes Nos.	References (Textbook, Journal)
	1	5.2.2024 7.2.2024	2	Introduction to Electronic Devices and Circuits, Classification of semiconductor materials	1 1	Electronic Devices and Circuits - J.Millman
	2	8.2.2024 9.2.2024	2	Unit-I:Introduction to PN Junction Diode, PN junction as a Diode	1 1	Electronic Devices and Circuits - J.Millman
	3	12.2.2024 15.2.2024	2	Working of PN Junction Diode, V-I Characteristics of PN Junction Diode	1 1	Electronic Devices and Circuits - J.Millman
1.	4	16.2.2024 17.2.2024	2	Diode current equation,Effect of temperature on V-I characteristics of Diode	1 1	Electronic Devices and Circuits - J.Millman
	5	19.2.2024	2	Diode equivalent circuits	1 1	Electronic Devices and Circuits - J.Millman
	6	21.2.2024	1	Diode resistances: Static & Dynamic resistances	1	Electronic Devices and Circuits - J.Millman
	7	22.2.2024	2	Diffusioncapacitance, Transition capacitance	1	Electronic Devices and Circuits - J.Millman
	8	23.2.2024 24.2.2024	2	Diode as a switch, Diode switching times and its characteristics	1 1	Electronic Devices and Circuits - J.Millman
	1	26.2.2024 28.2.2024	2	Problems based on Diodes, Unit –II: Introduction to Diode applications	2 2	Electronic Devices and Circuits - R.L. Boylestad
2.	2	29.2.2024	1	Half wave Rectifier	2 2	Electronic Devices and Circuits - R.L. Boylestad
	3	1.3.2024	2	Center-tapped Full wave Rectifier, Bridge full wave Rectifier	2 2	Electronic Devices and Circuits - R.L. Boylestad
	4	4.3.2024	2	Comparision of Rectifiers,	2	Electronic Devices and

				Department of ECE		
		6.3.2024		Capacitorfilter with Rectifiers	2	Circuits - R.L. Boylestad
	5	7.3.2024 11.3.2024	2	Inductor filter with Rectifiers, Clippers,Classification of clippers	2 2	Electronic Devices and Circuits - R.L. Boylestad
	6	13.3.2024 14.3.2024	2	Series and shunt clipper, Clipping at two independent levels	2 2	Electronic Devices and Circuits - R.L. Boylestad
	7	15.3.2024	2	Clampers, Classification of clampers	2 2	Electronic Devices and Circuits - R.L. Boylestad
	8	16.3.2024 16.3.2024	2	Negative Clamper, Positive Clamper	2 2	Electronic Devices and Circuits - R.L. Boylestad
	9	18.3.2024 19.3.2024	2	Clamping circuit theorem, Problems based on Diode applications	2 2	Electronic Devices and Circuits - R.L. Boylestad
	1	21.3.2024	1	Unit III: Introduction to BJT	3	Electronic Devices and Circuits - J.Millman
	2	22.3.2024	1	Construction and operation of BJT(NPN&PNP)	3	Electronic Devices and Circuits - J.Millman
3.	3	23.3.2024	1	Common Base Configuration	3	
	3	27.3.2024	1	Common Emitter Configuration	3	Electronic Devices and Circuits - J.Millman
	4	28.3.2024	1	Common Collector Configuration	3	Electronic Devices and Circuits - J.Millman
	5	30.3.2024	1	Relation between Alpha,Beta & Gamma	3	Electronic Devices and Circuits - J.Millman
	6	2.4.2024	2	Mid-I Exam		
	7	18.4.2023	1	Transisitor as a switch & switching times	3	Electronic Devices and Circuits - J.Millman
	1	19.4.2024	1	Unit IV: Introduction to JFET	4	Electronic Devices and Circuits - R.L. Boylestad
	2	22.4.2024 1.5.2024	2	Construction & operation of N-channel JFET, Construction & operation of P-channel JFET	4 4	Electronic Devices and Circuits - R.L. Boylestad
4.	3	2.5.2024	2	Differences between BJT & FET, Construction & operation of E-MOSFET	4 4	Electronic Devices and Circuits - R.L. Boylestad
	4	3.5.2024 4.5.2024	2	Construction & operation of D-MOSFET,V-I characteristics of D-MOSFET,E-MOSFET	4 4	Electronic Devices and Circuits - R.L. Boylestad
	5	6.5.2024	1	MOSFET as a capacitor	4 4	Electronic Devices and Circuits - R.L. Boylestad

				<u>. </u>		
	1	7.5.2024	1	Unit V: Special Purpose Devices	5	Introduction to Electronic Devices and Circuits- Rober T. PaynterPE
	2	9.5.2024	2	Zener diode and its voltageregulator, Silicon controlled rectifier	5 5	Introduction to Electronic Devices and Circuits- Rober T. PaynterPE
	3	10.5.2024	1	Tunnel diode	5	Introduction to Electronic Devices and Circuits- Rober T. PaynterPE
5	4	5.6.2024 6.6.2024	2	Unijunction Transistor, Photo diode and solar cell	5 5	Introduction to Electronic Devices and Circuits- Rober T. PaynterPE
	5	7.6.2024	1	Varactor Diode and Light Emitting Diode	5	Introduction to Electronic Devices and Circuits- Rober T. PaynterPE
	6	10.6.2024	1	Schottky Barrier Diode	5	Introduction to Electronic Devices and Circuits- Rober T. PaynterPE
	7	12.6.2024	1	Revision	5	Introduction to Electronic Devices and Circuits- Rober T. PaynterPE

Signature of HOD	Signature of faculty
Date:	Date:

LESSON PLAN (U-I)

Lesson No: 01, 02 Duration of Lessons: 3hr20 min

Lesson Title: Inroduction to Electronic Devices

<u>Instructional / Lesson Objectives:</u>

- To make students understand course structure
- To familiarize students on different electronic components
- To understand students different types of materials.

Teaching AIDS:PPTs, Black board

Time Management of Class :200 minutes

15 mins for taking attendance 15 mins for previous lecture 150 min for the lecture delivery 20 min for doubts session

Refer assignment – I & tutorial-I sheets

LESSON PLAN (U-I)

Lesson No: 03, 04 Duration of Lesson: 3 hr20 min

Lesson Title: PN junction as a Diode

<u>Instructional</u> / <u>Lesson Objectives:</u>

• To make students understand formation of PN junction diode

• To understand students different materials are used to form a Diode.

Teaching AIDS :PPTs, Black board Time Management of Class :200 minutes

15 mins for taking attendance15 mins for previous lecture150 min for the lecture delivery20 min for doubts session

Refer assignment – I & tutorial-I sheets

LESSON PLAN (U-I)

Lesson No: 05, 06 Duration of Lesson: 2 hr30 min

Lesson Title: V-I characteristics of PN junction Diode

<u>Instructional / Lesson Objectives:</u>

• To familiarize students to draw the characteristics of a Diode

• To understand students the working of PN junction Diode.

Teaching AIDS :PPTs, Black board

Time Management of Class : 150 min.

10 mins for taking attendance 20 for revision of previous class 100 min for lecture delivery 20 min for doubts session

Refer assignment – I & tutorial-I sheets

Department of ECE LESSON PLAN (U-I)

Lesson No: 07,08 Duration of Lesson: 2hr30 min

Lesson Title: Diode Current Equation, Temperature effect of VI characteristics of Diode

<u>Instructional / Lesson Objectives:</u>

• To understand students to analyse Diode current equation

• To understand students to solve problems based on Diode equation

• To familiarize students to draw the temperature effect of vi characteristics of Diode.

To familiarize students

Teaching AIDS:PPTs, Black board Time Management of Class : 150 min

5 mins for taking attendance 10 min for revision of previous class. 120 min for the lecture delivery 15 min for doubts session

Refer assignment – I & tutorial-I sheets

LESSON PLAN (U-I)

Lesson No: 09,10 Duration of Lesson: 1hr30 MIN

Lesson Title: blackbody radiation&Davisson – Germer experiment,

Instructional / Lesson Objectives:

- To make students understand the concept of black body radiation& dual nature of matter.
- To familiarize students on plank's law, de Broglie hypothesis
- To understand students' limitations of classical physics and dual nature of matter
- To provide information on Davission Germer experiment

Teaching AIDS :PPTs, Black board Time Management of Class : 150 min.

5 mins for taking attendance 10 min for revision of previous class. 120 min for the lecture delivery 15 min for doubts session

Refer assignment-II & tutorial-II sheets.

LESSON PLAN (U-I)

Lesson No: 11,12 Duration of Lesson: 1hr40 min.

Lesson Title: Heisenberg uncertainty principle(Qualitative), Born interpretation of the wave function, time independent Schrodinger wave equation.

<u>Instructional / Lesson Objectives:</u>

- To make students understand Heisenberg uncertainty principle and TISWE.
- To familiarize students on HUP and TISEW.
- To understand students the concept of uncertainty and probability density of wave functions.
- To provide information on wave functions and TISWE.

Teaching AIDS :PPTs, Black board Time Management of Class : 100 min.

10 mins for taking attendance

10 min for revision of previous class

70 min for the lecture delivery

10 min for doubts session

Refer assignment-II & tutorial-II sheets.

LESSON PLAN (U-I)

Lesson No: 13,14,15 Duration of Lesson: 1hr 40 min.

Lesson Title: particle in one dimensional potential box.

Instructional / Lesson Objectives:

- To make students understand potential in quantum mechanics
- To familiarize students on one dimensional box and its significance.
- To understand students the concept of wave functions, quantization of energy.
- To provide information on energy levels and probability of finding electron in particular region.

Teaching AIDS :PPTs, Black board Time Management of Class : 100 min.

10 mins for taking attendance

10 min for revision of previous class

70 min for the lecture delivery

10 min for doubts session

Refer assignment-II & tutorial-II sheets.

LESSON PLAN (U-II)

Lesson No: 06, 07,08 Duration of Lesson: 3 hr20 min

Lesson Title: free electron theory (Drude & Lorentz, Sommerfeld), Bloch's theorem, Kronig-Penney model (Qualitative), E-K diagram, effective mass of electron,

Instructional / Lesson Objectives:

- To make students understand the concept of free electron, periodic potential, effective mass
- To familiarize students on free electron theories and K-P model.
- To understand students the conduction of electrons in different materials.
- To provide information on solution for kronig-penny model and E-K diagram.

Teaching AIDS :PPTs, Black board Time Management of Class : 200 min

15 mins for taking attendance 15 mins for previous lecture 150 min for the lecture delivery 20 min for doubts session

Refer assignment-II & tutorial-II sheets.

LESSON PLAN (U-II)

Lesson No: 09 Duration of Lesson: 50 min

Lesson Title: origin of energy bands, classification of solids.

<u>Instructional / Lesson Objectives:</u>

- To make students understand origin of energy bands and classification of solids.
- To familiarize students on conduction and valence bands, conductors, semiconductors and insulators.
- To understand students the concept fermi level, acceptor and donor levels
- To provide information on band structures of materials.

Teaching AIDS :PPTs, Black board Time Management of Class : 50 min

5 mins for taking attendance 5 mins for previous lecture 30 min for the lecture delivery 10 min for doubts session

Refer assignment-II & tutorial-II sheets.

LESSON PLAN (U-IIII)

Lesson No: 01,02 Duration of Lesson: 2hr30 min

Lesson Title: Intrinsic and extrinsic semiconductors, energy band diagrams, Hall effect

Instructional / Lesson Objectives:

- To make students understand Hall effect
- To familiarize students on direct and indirect bandgap semiconductors
- To understand students the concept of doping to form intrinsic and extrinsic semiconductors.
- To provide information on structure and applications of semiconductors

Teaching AIDS :PPTs, Black board Time Management of Class : 100 min

10 mins for taking attendance

20 for revision of previous class

60 min for lecture delivery

10 min for doubts session

Refer assignment-III & tutorial-III sheets.

LESSON PLAN (U-III)

Lesson No:04 Duration of Lesson: 50 min

Lesson Title: pn junction diode

<u>Instructional / Lesson Objectives:</u>

- To make students understand the concept of diodes and biasing.
- To familiarize students on formation and working ofpn junctions
- To understand students the difference between forward and reverse bias.
- To provide information on I- V Characteristics and applications of pn junction diode

Teaching AIDS :PPTs, Black board Time Management of Class : 50 min

5 mins for taking attendance 5 mins for previous lecture 30 min for the lecture delivery 10 min for doubts session

Refer assignment-III & tutorial-III sheets.

LESSON PLAN (U-III)

Lesson No: 05,06 Duration of Lesson: 2hr30 min

Lesson Title: Zener diode, Bipolar junction transistor (BJT)

<u>Instructional / Lesson Objectives:</u>

• To make students understand difference between pn and zenar diode.

- To familiarize students on functioning of n-p-n and p-n-p transistor.
- To understand students the concept of different working regions in BJT.

• To provide information on applications of diode and transistor.

Teaching AIDS :PPTs, Black board

Time Management of Class : 150 min

5 mins for taking attendance 10 min for revision of previous class. 120 min for the lecture delivery 15 min for doubts session

Refer assignment-III & tutorial-III sheets.

LESSON PLAN (U-III)

Lesson No: 07,08 Duration of Lesson: 1hr 40 min

Lesson Title: LED and Photo diode

Instructional / Lesson Objectives:

- To make students understand construction and working of LED and photodiode.
- To familiarize students on I-V characteristics of LED and photodiode.
- To understand students the concept of electroluminescence and photovoltaic effect.
- To provide information on applications of LED and Photodiode.

Teaching AIDS :PPTs, Black board Time Management of Class : 100 min

10 mins for taking attendance

15 for revision of previous class

60 min for lecture delivery

15 min for doubts session

Refer assignment-III & tutorial-III sheets.

LESSON PLAN (U-III)

Lesson No: 09 Duration of Lesson: 50 min

Lesson Title: Solar Cell

<u>Instructional / Lesson Objectives:</u>

- To make students understand the concept of photovoltaic effect and efficiency of solar cell'
- To familiarize students on construction and working of solarcell.
- To understand students the difference between solar cell and photodiode.
- To provide information on applications of solar cell.

Teaching AIDS :PPTs, Black board Time Management of Class : 50 min.

5 mins for taking attendance 5 mins for previous lecture 30 min for the lecture delivery 10 min for doubts session

Refer assignment-III & tutorial-III sheets.

LESSON PLAN (U-IV)

Lesson No: 01, 02 Duration of Lesson: 2 hr30 min

Lesson Title: Nano science and Bottom-up fabrication: sol-gel, combustion methods

Instructional / Lesson Objectives:

- To make students understand the synthesis methods of nanomaterials
- To familiarize students on nanoscale and significance of nanomaterials.
- To understand students the concept of quantum confinement, surface to volume ratio
- To provide information on sol-gel process and combustion methods.

Teaching AIDS :PPTs, Black board Time Management of Class : 150 min

5 mins for taking attendance 10 min for revision of previous class. 120 min for the lecture delivery 15 min for doubts session

Refer assignment – IV& tutorial-IV sheets

LESSON PLAN (U-IV)

Lesson No: 03, 04 Duration of Lesson: 3 hr20 min

Lesson Title: Top-down fabrication: ball milling, Physical vapor deposition (PVD)

Instructional / Lesson Objectives:

- To make students understand top down and bottom-up methods.
- To familiarize students on ball milling and PVD
- To understand students the concept of milling and vapor deposition.
- To provide information on advantages, limitation and applications of the method.

Teaching AIDS :PPTs, Black board

Time Management of Class: 200 min

15 mins for taking attendance

15 mins for previous lecture

150 min for the lecture delivery

20 min for doubts session

Refer assignment – IV & tutorial-IV sheets

LESSON PLAN (U-IV)

Lesson No: 05 Duration of Lesson: 1hr30 MIN

Lesson Title: Chemical vapor deposition (CVD)

<u>Instructional / Lesson Objectives:</u>

• To make students understand the concept of CVD

- To familiarize students on procedure to synthesize nanomaterials.
- To provide information on applications of CVD.

Teaching AIDS :PPTs, Black board Time Management of Class : 50 min

5 mins for taking attendance 5 mins for previous lecture 30 min for the lecture delivery 10 min for doubts session

Refer assignment – IV & tutorial-IV sheets

LESSON PLAN (U-IV)

Lesson No: 06, 07 Duration of Lesson: 1 hr40 min

Lesson Title: Characterization techniques – XRD, SEM

<u>Instructional / Lesson Objectives:</u>

- To make students understand significance of characterization of nanomaterials.
- To familiarize students on characterization of nanomaterialsusing XRD and SEM
- To understand students the analysis of XRD and SEM diagrams of nanomaterials.
- To provide information on crystal structure analysis and morphological studies of nanomaterials.

Teaching AIDS :PPTs, Black board Time Management of Class : 100 min

10 mins for taking attendance15 for revision of previous class60 min for lecture delivery15 min for doubts session

Refer assignment – IV & tutorial-IV sheets

LESSON PLAN (U-IV)

Lesson No:08 Duration of Lesson: 50 min

Lesson Title: Transmission Electron Microscope (TEM), Applications of nanomaterials

Instructional / Lesson Objectives:

- To make students understand the construction and working of TEM
- To familiarize students on TEM image analysis
- To understand students the concept of single crystal, polycrystalline and amorphous
- To provide information on nanoparticle size distribution and defects in materials.

Teaching AIDS :PPTs, Black board Time Management of Class : 50 min

5 mins for taking attendance 5 mins for previous lecture 30 min for the lecture delivery 10 min for doubts session

Refer assignment – IV & tutorial-IV sheets

LESSON PLAN (U-V)

Lesson No: 01,02 Duration of Lessons: 3hr 20 min

Lesson Title: Interaction of radiation with matter Einstein coefficients and their relations

Instructional / Lesson Objectives:

- To make students understand the concept of absorption and stimulated emission
- To familiarize students on interaction of matter with radiation.
- To provide information on Einstein coefficients and relations.

Teaching AIDS :PPTs, Black board Time Management of Class : 200 min

15 mins for taking attendance 15 mins for previous lecture 150 min for the lecture delivery 20 min for doubts session

Refer assignment- V& tutorial-V sheets.

LESSON PLAN (U-V)

Lesson No: 03,04 Duration of Lesson: 1hr40 min

Lesson Title: Laser beam characteristics, Important components of laser-active medium, pumping source, optical Resonator, Construction and working principle- Nd:YAGlaser, He-Ne laser

<u>Instructional / Lesson Objectives:</u>

- To make students understand working of laser
- To familiarize students on components of laser and its functioning
- To understand students the concept of population inversion and lasing action
- To provide information on Construction and working of Lasers.

Teaching AIDS :PPTs, Black board Time Management of Class : 100 min

10 mins for taking attendance 15 for revision of previous class

60 min for lecture delivery

15 min for doubts session

Refer assignment- V & tutorial-V sheets.

LESSON PLAN (U-V)

Lesson No: 05 Duration of Lesson: 1hr40 min

Lesson Title: semiconductor laser and applications of laser,

Instructional / Lesson Objectives:

- To make students understand working of semiconductor laser.
- To familiarize students on laser characteristics and applications
- To provide information on applications of lasers in different fields.

Teaching AIDS :PPTs, Black board Time Management of Class : 100 min

10 mins for taking attendance

15 for revision of previous class

60 min for lecture delivery

15 min for doubts session

Refer assignment- V & tutorial-V sheets.

LESSON PLAN (U-V)

Lesson No: 06, 07 Duration of Lesson: 2hr30 min

Lesson Title: Introduction to optical fibers and classification

Instructional / Lesson Objectives:

- To make students understand the concept of total internal reflection, acceptance angle and numerical aperture.
- To familiarize students on construction and types of optical fibers.
- To understand students, step and graded index fibers.
- To provide information on advantages of optical fibers

Teaching AIDS :PPTs, Black board Time Management of Class : 150 min

5 mins for taking attendance 10 min for revision of previous class. 120 min for the lecture delivery 15 min for doubts session

Refer assignment- V & tutorial-V sheets.

LESSON PLAN (U-V)

Lesson No: 08 Duration of Lesson: 1hr 40 min

Lesson Title: losses in optical fiber, optical fiber for communication system, applications of optical fiber.

Instructional / Lesson Objectives:

- To make students understand losses in optical fibers.
- To familiarize students on communication systems in optical fibers.
- To understand student applications of optical fibers

Teaching AIDS :PPTs, Black board Time Management of Class :100 min

10 mins for taking attendance

15 for revision of previous class

60 min for lecture delivery

15 min for doubts session

Refer assignment- V & tutorial-V sheets.

ASSIGNMENT-1

Question No.	Question	Objective No.	Outcome No.
1	Explain the working of PN Junction diode and illustrate The characteristics in forward and reverse bias?	1	1
2	 (A) Define reverse saturation current in PN junction Diode? (B) A Si diode has a reverse saturation current of 2.5μA at 300°K. Find forward voltage for a forward current of 10Ma. 	1	1
3	Derive the expression for diffusion capacitance of a PN Junction diode?	1	1

Signature of HOD	Signature of faculty
Date:	Date:

ASSIGNMENT – 2

Question No.	Question	Objective No.	Outcome No.
1	Draw and explain Half wave Rectifier with the help of Waveforms and derive the following parameters. (i) V DC (ii) Efficiency (iii) Ripple factor (iv) TUF	2	2
2	Design a clipping circuit that clips at two independent Levels.	2	2
3	Explain the operation of positive clamping and Negative clamping circuits.	2	2

Signature of HOD	Signature of faculty
Date:	Date:

ASSIGNMENT-3

Question No.	Question	Objective No.	Outcome No.
1	Explain the working of NPN and PNP transistors?	3	3
2	Draw and Explain the characteristics of Common Emitter Configuration?	3	3

Signature of HOD	Signature of faculty
Date:	Date:

ASSIGNMENT-4

Question No.	Question	Objective No.	Outcome No.
1	i) Illustrate the working of N-channel JFET with its Characteristics?ii) Explain how FET acts as a Voltage Variable Resistor?	4	4
2	Explain the construction &working of P-channel Enhancement MOSFET with its characteristics?	4	4

Signature of HOD	Signature of faculty
Date:	Date:

ASSIGNMENT-5

Question No.	Question	Objective No.	Outcome No.
1	Explain the construction of Zener diode and illustrate the Characteristics in forward bias and reverse bias?	5	5
2	Explain the operation of UJT and draw its characteristics?	5	5

Signature of HOD	Signature of faculty
Date:	Date:

TUTORIAL – 1

This tutorial co	orresponds to Uni	t No. 1 (Objective N	os.: 1, Outcome Nos.:	1)
Q1. What type	of impurity ions	is present in P-type s	semiconductor?	
A) Donor ions	B) Acceptor ions	C) Both Donor and a	cceptor ionsD) None	of these
Q2. What is bu	uilt-in potential va	alue of Ge Diode?		
A) 0.3v	B) 0.1v	C) 0.9v	D) 0.7v	1
Q3. In forward	l bias condition, t	he rise in temperatur	e how the characterist	ics of Si diode changes
A) Shift right 1	B) shift left	C) Constant	D) none of these	
Q4. In reverse	e bias condition,	for every 10 degree	centigrade rise in te	mperature, the reverse saturation
current is				
A) Doubled	B) Tripled C	C) Constant D) Non	e of these	
Q5. How many	y valance electror	ns are present in semi	iconductor material?	
A) =4B) $<$ 4C)	>4	D) none of these		
Signature of H	OD			Signature of faculty
Date:				Date:

TUTORIAL-2

This tutorial corresponds to Unit No. 2 (Objective No.	os.: 2, Outcome Nos.: 2)	
Q1. what is the efficiency of Center tapped full wave l	Rectifier	
A) 40.5% B) 81.2%C) 27.8%D) 121%		
Q2. Clamper circuit is also referred as?		
•	D) DC leveler	
Q3. Which circuit is called the Limiter circuit?		
A) chopper circuit B) clipper circuit C) clamper circui	t D) chopping circuit	
Q4. Rectifier means		
A) AC to DC converter C) DC to AC converter		
B) AC to Pulsating DC D) NONE OF THESE		
Q5. How many Diodes used in Bridge Rectifier		
A) 1 B) 2C) 3 D) 4		
Signature of HOD	Signature of faculty	
Date:		

TUTORIAL SHEET - 3

This tutorial corres	sponds to Unit No. 3	(Objective Nos.: 3, Outcome Nos.	: 3)
Q1. Which part of	a transistor is heavily	doped and emits majority carrier	s, either electrons or holes?
A) Collector	B) Emitter	C) Base and EmitterD) Base	
Q2.The number of	depletion layers in a	transistor is?	
A) 2B) 3	C) 4	D):	5
Q3. Which among	the following config	uration has High current and Low	voltage gain?
A) CB	B) CC	C) CED) None of these	
Q4. BJT transistor	consists of how man	y terminals?	
A) 3 B) 2 C) 1		D) 4	
Q5. BJT stands for	`		
Signature of HOD			Signature of faculty
Date:			Date:

TUTORIAL – 4

This tutorial corresponds to Unit No. 4 (Ob	bjective Nos.: 4, Outcome Nos	.: 4)
Q1.What are the terminals of FET		
A) Gate Drain Source C) Base Emitter Col	llector	
B) Anode Cathode Gate D) Darian Base So	ource	
Q2. FET Stands for		
Q3. MOSFET STANDS FOR		
Q4 is a current control de	evice	
A) BJT B) FETC) MOSFETD) VDR		
Q5 is a voltage control de	evice	
A) BJT C) FET B) UJT	D) PN	
Signature of HOD		Signature of faculty
Date:		Date:

TUTORIAL SHEET - 5

This tutorial corresponds to Unit N	No. 5 (Objective Nos.: 5,	Outcome Nos.:	5)
Q1. SCR stands for			
Q2. Solar cell can also be called as	S		
Q3. Light Emitting Diode converts	S		
A) Electrical to Light energy	B) Light to Electrical e	energy	
C) Electrical to mechanical energy	D) None of these		
Q4. Photo diode operates in			
A) forward bias	B) reverse bias		
C) both forward and reverse	D) none		
Q5. What is the range of intrinsic	standoff ratio in UJT		
A) 0.5 to 0.75 B) 1 to 1.5	C) 2 to 5	D) above 5	
Signature of HOD			Signature of faculty
Date:			Date:

EVALUATION STRATEGY

Target (s)	
a. Percentage of Pass : 85%	
Assessment Method (s) (Maximum Marks for evaluation are defined in the Academic Regulations)	
a. Daily Attendance	
b. Assignments	
c. Online Quiz	
d. Continuous Internal Assessment	
e. Semester / End Examination	
List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in t semester	his
Case Study of any one existing application	
Signature of HOD Signature of faculty	
Date: Date:	

COURSE COMPLETION STATUS

Actual Date of Completion & Remarks if any

Units	Remarks	Objective No. Achieved	Outcome No. Achieved
Unit 1	completed on 26.02.2024	1	1
Unit 2	completed on 19.03.2024	2	2
Unit 3	completed on 18.04.2024	3	3
Unit 4	completed on 06.05.2024	4	4
Unit 5	completed on 12.06.2024	5	5

Signature of HOD	Signature of faculty
Date:	Date:

Mappings

1. Course Objectives-Course Outcomes Relationship Matrix (Indicate the relationships by mark "X")

Course-Outcomes Course-Objectives	1	2	3	4	5
1	Н				
2		Н			
3			Н		
4				Н	
5					Н

2. Course Outcomes-Program Outcomes (POs) & PSOs Relationship Matrix (Indicate the relationships by mark "X")

P-Qutcomes C-Outcomes	PO- 1	PO- 2	PO-	PO- 4	PO- 5	PO-6	PO-7	PO-8	PO-9	PO- 10	PO- 11	PO- 12	PSO 1	PSO 2
1	Н			M										
2	M	Н	M											
3	Н													
4	M	L	M	L										
5	Н	L		M	M									

H-HIGH M-MODERATE L-LOW

Rubric for Evaluation

Performance Criteria	Unsatisfactory	Unsatisfactory Developing		Exemplary
	1	2	3	4
Research & Gather Information	intermation that		Collects some basic Information most relates to the topic	Collects a great deal of Information all relates to the topic
Fulfill team role's duty	Does not perform any duties of assigned team role.	Performs very little duties.	Performs nearly all duties.	Performs all duties of assigned team role.
Share Equally	Always relies on others to do the work.	Rarely does the assigned work - often needs reminding.	Usually does the assigned work - rarely needs reminding.	Always does the assigned work without having to be reminded
Listen to other team mates	Is always talking—never allows anyone else to speak.	Usually doing most of the talking rarely allows others to	Listens, but sometimes talks too much.	Listens and speaks a fair amount.

EDC MID I & II PAPERS

I B.TECH II SEMESTER I MID EXAMINATIONS - APRIL 2024

Branch: B.Tech. (Common to All)

Date: 02 - Apr - 2024 AN

Max. Marks: 30

Time: 120 Minutes

Subject: Electronic Devices and Circuits, EC205ES

3				
	PART - A		3037336	3031
ANSWE	R ALL QUESTIONS		10 X 1 M	= 10 M
Q.No	Question		CO	BTL
1.	Write diode current equation	()	CO1	L2
2.	An ideal diode in forward-bias acts as (A). Buffer (B). Multiplier (C). Closed switch (D). Ope	()	CO1	L1
3.	VI characteristics of pn junction diode is (A). Linear (B). non linear (C). decreasing (D). none of	()	CO1	L2
4.	Define reverse saturation current of PN junction diode	()	CO1	L2
5.	Define efficiency and what is the efficiency of halfwave and fullwave rectifier	CO2	L1	
6.	Define clipper	()	CO2	L1
7.	Define Rectifier	()	CO2	L1
8.	what do you meant by clamper	()	CO2	L1
9.	What is the increasing order for size of BJT terminals	()	CO3	L2
	(A). base <emitter<collector (b).="" collector<emitter<br=""></emitter<collector> base (none of the above	(C). base <col< td=""><td>llector<emitter< td=""><td>(D).</td></emitter<></td></col<>	llector <emitter< td=""><td>(D).</td></emitter<>	(D).
10.	What is the order of doping concentration for regions of BJT	()	CO3	L2
	(A). base>emitter>collector (B). emitter>base>collector (none of the above	(C). base <col< td=""><td>lector<emitter< td=""><td>(D).</td></emitter<></td></col<>	lector <emitter< td=""><td>(D).</td></emitter<>	(D).
	<u>PART - B</u>			5075
ANSWEI	R ANY FOUR		4 X 5 M =	= 20 M
Q.No	Question		CO	BTL
11.	With neat diagram explain the working of pn junction diode forward bias and reverse bias with volt-ampere characteristic	in s	CO1	L2
12.	Explain volt-ampere characteristics of pn junction diode and show the effect of temperature on it		CO1	L2
13.	Explain the working of bridge rectifier with the help of waveforms and also derive its efficiency		CO2	L2
14.	Explain the working of halfwave rectifier with the help of waveforms and also derive its ripple factor		CO2	L2
15.	Explain the operation of PNP Transistor		CO3	L2
16.	With neat diagram explain the input-output characteristics of BJT for CB configuration		CO3	L3

Department of ECE

I B.TECH II SEMESTER II MID EXAMINATIONS - JUNE 2024

Branch: B.Tech. COMMON TO ALL Max. Marks: 30M Date: 19-Jun-2024 Session: Afternoon Time: 120 Min

Subject: Electronic Devices and Circuits, EC205ES

	<u>PART - A</u>		
ANSWI	ER ALL THE QUESTIONS	10 X 1	M = 10M
Q.No	Question	CO	BTL
1.	What are the application of transistors.	CO3	L1
2.	What is saturaion and cut off region.	CO3	L1
3.	MOSFET stands for	CO4	L1
4.	Write relation between FET parameters.	CO4	L1
5.	FET is Varaible resistor (A). Current (B). Voltage (C). Power (D). Channel	CO4	L1
6.	Draw Symbol of N-channel JFET	CO4	L1
7.	Draw symbol of UJT.	CO5	L1
8.	Draw Characteristics of Solar Cell	CO5	L1
9.	Draw symbol of LED.	CO5	L1
10.	What are the applications of Photo Diode.	CO5	L1
NOW	PART - B		
	R ANY FOUR	4 X 5M	=20M
Q.No	Question	CO	BTL
11.	Draw and explain input and output characteristics of of BJT CE configuration.	CO3	L3
12.	Explain Transistor switching characteristics in detail.	CO3	L4
13.	Explain construction, working and V-I Characteristics of N-channel Depletion MOSFET.	CO4	L3
14.	Compare BJT and FET.	CO4	L3
15.	Explain operation, V-I Characteristics of UJT.	CO5	L3
16.	Explain operation, V-I Characteristics of Varactor Diode.	CO5	L3

Internal Marks (ECE)

Continuous Internal Assessment (R-22)

Programme: **B.Tech. (ECE)** Year: **I** Course: **Theory A.Y: 2023-24**

Course: **EDC** Section: **A&B** Faculty Name: Mr.L.HARI PRASAD

S. No	Roll No	MID-I (30M)	MID-II (30M)	Avg. of MID I & II(30M)	Avg. of assignment I & II(5M)	Viva- Voce/Poster Presentation (5M)	Total Marks (40)
1	22C11A0406	2	7	5	5	5	15
2	22C11A0412	6	15	11	3	5	19
3	23C11A0401	18	16	17	5	5	27
4	23C11A0402	21	16	19	5	5	29
5	23C11A0403	10	18	14	5	5	24
6	23C11A0404	21	29	25	5	5	35
7	23C11A0405	10	13	12	5	5	22
8	23C11A0406	14	9	12	5	5	22
9	23C11A0407	12	16	14	5	5	24
10	23C11A0408	13	16	15	5	5	25
11	23C11A0409	10	14	12	5	5	22
12	23C11A0410	9	11	10	5	5	20
13	23C11A0411	8	17	13	5	5	23
14	23C11A0412	8	10	9	5	5	19
15	23C11A0413	18	23	21	5	5	31
16	23C11A0414	17	6	12	5	5	22
17	23C11A0415	12	13	13	5	5	23
18	23C11A0416	5	4	5	5	5	15

Department of ECE											
19	23C11A0417	17	23	20	5	5	30				
20	23C11A0418	1	7	4	5	5	14				
21	23C11A0419	11	19	15	5	5	25				
22	23C11A0420	25	27	26	5	5	36				
23	23C11A0421	11	7	9	5	5	19				
24	23C11A0422	4	3	4	5	5	14				
25	23C11A0423	4	5	5	5	5	15				
26	23C11A0424	17	26	22	5	5	32				
27	23C11A0425	22	24	23	5	5	33				
28	23C11A0426	14	13	14	5	5	24				
29	23C11A0427	16	22	19	5	5	29				
30	23C11A0428	14	20	17	5	5	27				
31	23C11A0429	12	12	12	5	5	22				
32	23C11A0430	17	12	15	5	5	25				
33	23C11A0431	24	24	24	5	5	34				
34	23C11A0432	1	15	8	5	5	18				
35	23C11A0433	9	13	11	5	5	21				
36	23C11A0434	4	9	7	5	5	17				
37	23C11A0435	5	18	12	5	5	22				
38	23C11A0436	20	15	18	5	5	28				
39	23C11A0437	22	10	16	5	5	26				
40	23C11A0438	9	10	10	5	5	20				
41	23C11A0439	25	23	24	5	5	34				
42	23C11A0440	16	12	14	5	5	24				
43	23C11A0441	19	23	21	5	5	31				
44	23C11A0442	16	16	16	5	5	26				
L						I					

Department of ECE												
45	23C11A0443	2	12	7	5	5	17					
46	23C11A0444	3	14	9	5	5	19					
47	23C11A0445	9	10	10	5	5	20					
48	23C11A0446	20	21	21	5	5	31					
49	23C11A0447	14	13	14	5	5	24					
50	23C11A0448	18	16	17	5	5	27					
51	23C11A0449	1	AB	1	3	AB	4					
52	23C11A0450	30	24	27	5	5	37					
53	23C11A0451	28	17	23	5	5	33					
54	23C11A0452	14	19	17	5	5	27					
55	23C11A0453	22	18	20	5	5	30					
56	23C11A0454	10	11	11	5	5	21					
57	23C11A0455	29	30	30	5	5	40					
58	23C11A0456	16	18	17	5	5	27					
59	23C11A0457	25	29	27	5	5	37					

No. of Absentees: MID-I: 00 , MID-II: 02

Total Strength: <u>59</u>

Signature of Faculty

Signature of HoD

Department of ECE Sample Answer scripts and Assignments Link

https://drive.google.com/file/d/1iV9e5hPmD9CWVYvqXlTWjZvOnuZDkxng/view?usp=sharing https://drive.google.com/file/d/1Dz7iSsTOrYgHmaCcnuHINCw9qUXKcRzj/view?usp=sharing

Department of ECE EDC Material Link

https://docs.google.com/presentation/d/1FlzXAV_y6WQedeFmXhw oN6HNENwnxZDX/edit?usp=sharing&ouid=11796218771865172711 2&rtpof=true&sd=true

https://drive.google.com/file/d/1gEA_8HwZbxE9GD3S9IC1wwPtCBx 1nlfy/view?usp=sharing

https://drive.google.com/file/d/1bHUwwxgtsFVxOxWF_sN6Gpx0ttU4tOqa/view?usp=sharing

https://drive.google.com/file/d/1BJ9A7qNcY4IO2ynhz2D1vyxN5-fe_-53/view?usp=sharing

https://drive.google.com/file/d/1Kys7IFB2VHpLKrQ3FJhW7erOcMkwJpQT/view?usp=sharing

https://drive.google.com/file/d/1oST5IQEwPV4xtpBwzFbg_ERpwpwimt0g/view?usp=sharing