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ANURAG ENGINEERING COLLEGE

(An Autonomous Institution)
Il Year B.Tech. ECE Il Semester

(EC401PC) PROBABILITY THEORY AND STOCHASTIC
PROCESSES

Pre-requisite: Mathematics

Course Objectives:
1. This gives basic understanding of random variables

This gives basic understanding of operations that can be performed on them

To know the temporal characteristics of Random Process.
To know the Spectral characteristics of Random Process

To Learn the Basic concepts of Information theory Noise sources and its
representation forunderstanding its characteristics.
UNIT - |

Probability & Random Variable: Probability introduced through Sets and Relative
Frequency: Experiments and Sample Spaces, Discrete and Continuous Sample

Spaces, Events, Probability Definitions and Axioms, Joint Probability, Conditional
Probability, Total Probability, Bay’s Theorem, Independent Events, Random
Variable-Definition, Conditions for a Function to be a Random Variable, Discrete,
Continuous and Mixed Random Variable, Distribution and Density functions,
Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Methods
of defining Conditioning Event, Conditional Distribution, Conditional Density and
their Properties.

UNIT -1l

Operations on Single & Multiple Random Variables — Expectations: Expected
Value of a Random Variable, Function of a Random Variable, Moments about the
Origin, Central Moments, Variance and Skew, Chebychev’'s Inequality,
Characteristic Function, Moment Generating Function, Transformations of a
Random Variable: Monotonic and Non-monotonic Transformations ofContinuous
Random Variable, Transformation of a Discrete Random Variable. Vector Random
Variables, Joint Distribution Function and its Properties, Marginal Distribution
Functions, Conditional Distribution and Density — Point Conditioning, Conditional
Distribution and Density — Interval conditioning, Statistical Independence. Sum
of Two Random Variables, Sum of Several Random Variables, Central Limit
Theorem, (Proof not expected). Unequal Distribution, Equal Distributions. Expected
Value of a Function of Random Variables: Joint Moments about the Origin, Joint
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Central Moments, Joint Characteristic Functions, Jointly Gaussian Random
Variables: Two Random Variables case, N Random Variable case, Properties,
Transformations of Multiple Random Variables, Linear Transformations of Gaussian
Random Variables.

UNIT - 11l
Random Processes — Temporal Characteristics: The Random Process Concept,
Classification of Processes, Deterministic and Nondeterministic Processes,
Distribution and Density Functions, concept of Stationarity and Statistical
Independence. First-Order Stationary Processes, Second-Order and Wide-Sense
Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity,
Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function
and Its Properties, Cross-Correlation Function and Its Properties, Covariance
Functions, Gaussian Random Processes, Poisson Random Process. Random
Signal Response of Linear Systems: System Response — Convolution, Mean and
Mean-squared Value of System Response, autocorrelation Function of Response,
Cross-Correlation Functions of Input and Output.

UNIT - IV
Random Processes — Spectral Characteristics: The Power Spectrum: Properties,
Relationship between Power Spectrum and Autocorrelation Function, The Cross-
Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum

and Cross-Correlation Function. Spectral Characteristics of System Response:
Power Density Spectrum of Response, Cross-Power Density Spectrums of Input
and Output.

UNIT -V

Noise Sources & Information Theory: Resistive/Thermal Noise Source, Arbitrary
Noise Sources, Effective Noise Temperature, Noise equivalent bandwidth,
Average Noise Figures, Average Noise Figure of cascaded networks, Narrow
Band noise, Quadrature representation of narrow band noise & its properties.
Entropy, Information rate, Source coding: Huffman coding, Shannon Fano coding,
Mutual information, Channel capacity of discrete channel, Shannon-Hartley law;
Trade -off between bandwidth and SNR.

TEXT BOOKS:
1. Peyton Z. Peebles - Probability, Random Variables & Random Signal

Principles, 4" Ed, TMH,2001.
2. Taub and Schilling - Principles of Communication systems, TMH, 2008

REFERENCE BOOKS:
1. Bruce Hajck - Random Processes for Engineers, Cambridge unipress, 2015
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2. Athanasios Papoulis and S. Unnikrishna Pillai - Probability, Random
Variables and StochasticProcesses, 4™ Ed., PHI, 2002.

3. B.P. Lathi - Signals, Systems & Communications, B.S. Publications, 2003.

4. S.P Eugene Xavier -Statistical Theory of Communication, New Age Publications,
2003

Course Outcomes: Upon completing this course, the students will be able to:

Perform operations on single and multiple Random variables.
Perform operations on single and multiple Random variables

Determine the temporal characteristics of Random Signals and Characterize
LTI systems.

Determine the Spectral characteristics of Random Signals and Characterize
driven by stationary random process by using ACFs and PSDs.

Understand the concepts of Noise and Information theory in Communication
Systems.

Int. Marks: 40 Ext. Marks:60 Total Marks:;100
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Time Table: B. Tech Il Year Il Semester (A Sec)
FACULTY NAME: VALAPARLA DAVID

w.e.f: 05.02.2024

9:30-10:20

12:10-1:00

1:40-2:25

2:25-3:10 3:15-4:00

PTSP

ADC / ECA LAB

ECA

LDICA / ADC LAB

LDICA

LDICA /ECA LAB

EMTL

EMTL HVPE

ECA

REAL TIME PROJECT

ADC

TEDX/VLS

LIB/
SPORTS

Course
Code

Course Name

Faculty Name

Il B.Tech. Il Semester Academic Calendar

EC401PC

Probability Theory and
Stochastic Processes

Mr. V. David

| Spell Instruction

05.02.2024 | 30.03.2024

EC402PC

Electromagnetic Fields and
Transmission Lines

Mr. T.
Narasimha
Rao

| Mid
Examinations

01.04.2024 | 03.04.2024

EC403PC

Analog and Digital
Communications

Mr. G.
Ravikumar
(AC)

EC404PC

Linear and Digital IC
Applications

Mr. B.
Narasimha
Rao

Il Spell Instruction

04.04.2024 | 22.05.2024

EC405PC

Electronic Circuit Analysis

Mrs. B.
Swetha

Summer Vacation

23.05.2024 | 05.06.2024

EC406PC

Analog and Digital
Communications
Laboratory

Mr. G.
Ravikumar

Il Spell Instruction
Continuation

06.06.2024 | 12.06.2024

EC407PC

Linear and Digital IC
Applications Laboratory

Mr. B.
Narasimha
Rao

I Mid
Examinations

13.06.2024 | 15.06.2024

EC408PC

Electronic Circuit Analysis
Laboratory

Mrs. B.
Swetha

Preparation
Holidays

18.06.2024 | 24.06.2024

EC409PW

Real Time Project/ Field
Based Project

Mr. G.
Ravikumar

Semester End
Examinations
(Theory &
Practical’s)

25.06.2024 | 20.07.2024

HS410MC

Human Values and
Professional Ethics

Mrs. V.
Kalyani

Video Lecture Session
(TEDX/VLS)

Mr. D. Rajeev
Naik

Academic
Counselor

Mr. G. Ravikumar
(9502326896)

THUNKOJU AKHIL

CR’s

SHAIK KHATIJA

ROOM NUMBERS

Lecture Hall (E-406)

ADC Lab (E-301)

LDICA Lab (D-201)

ECA Lab (D-301)
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Time Table: B. Tech |l Year Il Semester (B Sec)

9:30-10:20

10:20- 11:20-
11:10 12:10

1:00

12:10-1:00 1:40-2:25 2:25-3:10 3:15-4:00

1:40

ADC

LDICA ECA

PTSP EMTL LDICA HVPE

PTSP

EMTL LDICA

ECA ADC PTSP HVPE

ECA

LDICA /ECA LAB PTSP REAL TIME PROJECT

LDICA

ADC

ADC / LDICA LAB

EMTL

ECA

ADC / ECA LAB

PTSP

ECA

LIB/

ECA TEDX/VLS SPORTS

Course
Code

Course Name

Il B.Tech. Il Semester Academic Calendar
Faculty Name

EC401PC

Probability Theory and
Stochastic Processes

Mr. V. David

(AC) | Spell Instruction | 05.02.2024 | 30.03.2024

EC402PC

Electromagnetic Fields and
Transmission Lines

Mr. T. | Mid

Narasimha L 01.04.2024 | 03.04.2024
Rao Examinations

EC403PC

Analog and Digital
Communications

Mr. G.
Ravikumar

EC404PC

Linear and Digital IC
Applications

Mr. B. Il Spell Instruction | 04.04.2024 | 22.05.2024
Narasimha
Rao

EC405PC

Electronic Circuit Analysis

Mrs. B.

Summer Vacation | 23.05.2024 | 05.06.2024
Swetha

EC406PC

Analog and Digital
Communications
Laboratory

Il Spell Instruction

Mr. V. David Continuation

06.06.2024 | 12.06.2024

EC407PC

Linear and Digital IC
Applications Laboratory

Mr. B.
Narasimha Il Mid

Rao / Mr. T. L 13.06.2024 | 15.06.2024
. Examinations
Narasimha

Rao

EC408PC

Electronic Circuit Analysis
Laboratory

Mrs. B. Preparation

Swetha Holidays 18.06.2024 | 24.06.2024

EC409PW

Real Time Project/ Field
Based Project

Mr. G. Semester End
Ravikumar Examinations

25.06.2024 | 20.07.2024

HS410MC

Human Values and
Professional Ethics

Mr. Md.

Fareed SHAIK SHAFIQ
Ahamad CR’s

Video Lecture Session
(TEDX/VLS)

. MEKALA SINDHU
Mr. P. Rajesh

Naik Academic Mr. V. David
Counselor (9550437983)

ROOM NUMBERS

Lecture Hall (E-407)

ADC Lab (E-301) | LDICA Lab (D-201) | ECA Lab (D-301)
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VISION AND MISSION OF THE COLLEGE

VISION

To be a premier Institute in the country and region for the study of
Engineering, Technology and Management by maintaining high academic
standards which promotes the analytical thinking and independent judgment
among the prime stakeholders, enabling them to function responsibly in the
globalized society.

MISSION

To be a world-class Institute, achieving excellence in teaching, research and
consultancy in cutting-edge Technologies and be in the service of society in
promoting continued education in Engineering, Technology and Management.

Quality Policy

Department of Electronics and Communication Engineering Quality policy is to ensure
and maintain a low-risk status from planned monitoring, maintenance and improvement of the

institutes Quality Framework.
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VISION AND MISSION OF THE DEPARTMENT
VISION OF THE DEPARTMENT

Our vision is to develop the department into a full-fledged centre of learning in various
fields of Electronics & Communication Engineering keeping in view the latest development.

MISSION OF THE DEPARTMENT

The Mission of the department is to turn out full-fledged Engineers in the field of Electronics
& Communication Engineering with an overall back-ground suitable for making a successful
career either in industry/research or higher education in India and abroad. To inculcate
professional behavior, strong ethical values, innovative research capabilities and leadership

abilities in the young minds so as to work with a commitment to the progress of the nation.

PROGRAM EDUCATIONAL OBJECTIVES
Graduates will be able to

Excel in professional career & higher education, by acquiring knowledge
in related fields of Electronics & Communication Engineering.

Exhibit leadership in their profession, through technological ability and
contemporary knowledge for solving real life problems appropriately that
are technically sound, economically feasible & socially acceptable.

Adapt to the emerging technologies for sustenance by exhibiting
professionalism, ethical attitude & communication skills in their relevant
areas of interest by engaging in lifelong learning.
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PROGRAM SPECIFIC OUTCOMES

Professional Skills: An ability to understand the basic concepts in
Electronics & Communication Engineering and to apply them to various
areas, like Electronics, Communications, Signal processing, VLSI,
Embedded systems etc., in the design and implementation of complex
systems.

Problem-Solving Skills: An ability to solve complex Electronics and
communication Engineering problems, using latest hardware and
software tools, along with analytical skills to arrive cost effective and
appropriate solutions.

Successful Career and Entrepreneurship: An understanding of social-
awareness & environmental-wisdom along with ethical responsibility to
have a successful career and to sustain passion and zeal for real-world
applications using optimal resources as an entrepreneur.
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PROGRAM OUTCOMES

. An ability to apply knowledge of mathematics, science, fundamentals of
" engineering to solve electronics and communication engineering problems.

An ability to identify, formulate and analyze and solve complex electronics
and communication Engineering using the first principles of mathematics
and engineering sciences.

An ability to develop solutions to electronics and communication systems
. to meet the specified needs with appropriate consideration for public health
and safety, cultural, societal, and environmental considerations.

. An ability to design and perform experiments of electronic circuits and
" systems, analyze and interpret data to provide valid conclusions.

An ability to learn, select and apply appropriate techniques, resources and

modern engineering tools including prediction and modelling, to complex
electronics And commiinicatinn svstems

. An ability to assess the knowledge of contemporary issues to the societal
" responsibilities relevant to the professional practice.

An ability to understand the impact of professional engineering solutions in
societal and environmental contexts and demonstrate knowledge for the
need of sustainable development.

. An ability to demonstrate the understanding of professional, ethical
" responsibilities and norms of engineering practice.

. An ability to function effectively as an individual and as a member or leader
" in diverse teams and in multidisciplinary settings.

. An ability to communicate effectively with the engineering community and
" with society at large.

An ability to demonstrate knowledge and understanding of engineering and
: management principles and apply these to manage projects.

. An ability to recognize the need for, and engage in lifelong learning in the
" broadest context of technological change.
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COURSE OBJECTIVES

On comiletion of this Sub" ect/Course the student shall be able to:

1 This gives basic understanding of random variables

This gives basic understanding of operations that can be performed
on them

To know the temporal characteristics of Random Process.

To know the Spectral characteristics of Random Process

To Learn the Basic concepts of Information theory Noise sources
and its representation forunderstanding its characteristics.

COURSE OUTCOMES

The expected outcomes of the Course/Subject are:

Perform operations on single and multiple Random variables.

Perform operations on single and multiple Random variables

Determine the temporal characteristics of Random Signals and Characterize LTI
systems.

Determine the Spectral characteristics of Random Signals and Characterize
driven by stationary random process by using ACFs and PSDs

Understand the concepts of Noise and Information theory in Communication
Systems

-

g :_'.:'.l:
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o e T

Signature or taculty

te: Please refer to Bloom’s Taxonomy, to know the illustrative verbs that can be used to state the outcomes.
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GUIDELINESTO STUDY THE COURSE / SUBJECT

Course Design and Delivery System (CDD):

The Course syllabus is written into number of learning objectives and outcomes.
Every student will be given an assessment plan, criteriafor assessment, scheme of evaluation and

grading method.

The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude
by various methods and the students will be given guidance to refer to the text books, reference

books, journals, etc.

The faculty be ableto —
Understand the principles of Learning
Understand the psychology of students
Develop instructional objectives for agiven topic
Prepare course, unit and lesson plans
Understand different methods of teaching and learning
Use appropriate teaching and learning aids
Plan and deliver lectures effectively

___--‘—'-.1“&(\--0

Signature of HOD
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Provide feedback to students using various methods of Assessments and tools of Evaluation
Act as aguide, advisor, counselor, facilitator, motivator and not just as a teacher alone
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COURSE SCHEDULE

The Schedule for the whole Course / Sub" ectis: PTSP

UNIT — | Probability & Random Variable:
Probability introduced through Sets and Relative
Frequency: Experiments and Sample Spaces, Discrete
and Continuous Sample Spaces, Events, Probability
Definitions and Axioms, Joint  Probability,
Conditional Probability, Total Probability, Bay’s
Theorem, Independent Events, Random Variable-
Definition, Conditions for a Function to be a Random
Variable, Discrete, Continuous and Mixed Random
Variable, Distribution and Density functions,
Properties, Binomial, Poisson, Uniform, Gaussian,
Exponential, Rayleigh, Methods of defining
Conditioning Event, Conditional  Distribution,
Conditiona Density and their Properties.

UNIT - II: Operations on Single & Multiple
Random Variables — Expectations. Expected Vaue
of a Random Variable, Function of a Random
Variable, Moments about the Origin, Central
Moments, Variance and Skew, Chebychev’s
Inequality, Characteristic  Function, Moment
Generating Function, Transformations of a Random
Variable: Monotonic and Non-monotonic
Transformations of Continuous Random Variable,
Transformation of a Discrete Random Variable.
Vector Random Variables, Joint Distribution
Function and its Properties, Margina Distribution
Functions, Conditional Distribution and Density —
Point Conditioning, Conditional Distribution and
Density — Interval conditioning, Statistical
I ndependence. Sum of Two Random Variables, Sum
of Severa Random Variables, Central Limit
Theorem, (Proof not expected). Unequal Distribution,
Equal Distributions. Expected Value of a Function of
Random Variables: Joint Moments about the Origin,
Joint Central Moments, Joint Characteristic Functions,
Jointly Gaussian Random Variables. Two Random
Variables case, N Random Variable case, Properties,
Transformations of Multiple Random Variables,
Linear Transformations of Gaussian Random
Variables.

05.02.2024 | 29.02.2024

02.03.2024 | 20.03.2024
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UNIT - IIl Random Processes — Temporal
Characteristicss The Random Process Concept,
Classification of Processes, Deterministic and
Nondeterministic Processes, Distribution and Density
Functions, concept of Stationarity and Statistical
Independence. First-Order Stationary  Processes,
Second- Order and Wide-Sense Stationarity, (N-
Order) and Strict-Sense Stationarity, Time Averages
and Ergodicity, Mean-Ergodic Processes, Correlation- | 1 03 2024 | 10.11.2023
Ergodic Processes, Autocorrelation Function and Its
Properties, Cross-Correlation Function and Its
Properties, Covariance Functions, Gaussian Random
Processes, Poisson Random Process. Random Signal
Response of Linear Systems. System Response —
Convolution, Mean and Mean-squared Value of
System Response, autocorrelation Function of
Response, Cross-Correlation Functions of Input and
Output.

UNIT - IV Random Processes — Spectral
Characteristics:. The Power Spectrum: Properties,
Relationship  between Power  Spectrum and
Autocorrelation Function, The Cross-Power Density
Spectrum, Properties, Relationship between Cross- | 27.04.2024 | 09.05.2024
Power Spectrum and Cross-Correlation Function.
Spectral Characteristics of System Response: Power
Density Spectrum of Response, Cross-Power Density
Spectrums of Input and Output.

UNIT -V Noise Sources & Information Theory:
Resistive/Thermal Noise Source, Arbitrary Noise
Sources, Effective Noise Temperature, Noise
equivalent bandwidth, Average Noise Figures,
Average Noise Figure of cascaded networks, Narrow
Band noise, Quadrature representation of narrow band | 10.05.2024 | 12.06.2024
noise & its properties. Entropy, Information rate,
Source coding: Huffman coding, Shannon Fano
coding, Mutual information, Channel capacity of
discrete channel, Shannon-Hartley law; Trade -off
between bandwidth and SNR.

dtal No. of Instructional periods available for the course: 70 Hours
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SCHEDULE OF INSTRUCTIONS - COURSE PLAN

05.02.2024
&
06.02.2024

UNIT -1 Probability

& Random Variable

Course Objectivesand
Course Outcomes

Peyton Z. Peebles - Probability,
Random Variables & Random
Signal Principles, 4" Ed, TMH,
2001.

07.02.2024
&
08.02.2024

Introduction to sets,
et types
Probability introduced
through Sets and
Relative Frequency

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

12.02.2024
&
13.02.2024

Experiments and
Sample Spaces
Events and its types.

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

14.02.2024
&
15.02.2024

Joint Probability
Probahility Definitions
and Axioms.

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

17.02.2024
&
19.02.2024

Problems
Conditional
Probability, Total
Probability.

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4™ Ed, TMH,2001

20.02.2024
&
21.02.2024

Bay’s Theorem,
Independent Events
Random Variable-
Definition, Conditions
for aFunctionto bea
Random Variable,

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

22.02.2024
&
24.02.2024

Discrete, Continuous
and Mixed Random
Variable
Distribution and
Density functions

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

26.02.2024
&
27.02.2024

Binomial, Poisson
Uniform, Gaussian
Exponential, Rayleigh

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

27.02.2024
&
28.02.2024

Problems
Methods of defining
Conditioning Event

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

28.02.2024
&
29.02.2024

Conditional
Distribution,

Peyton Z. Peebles -
Probability, Random Variables
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02-03-2024

UNIT - Il Operations
on Single & Multiple
Random Variables

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

04.03.2024
&
05.03.2024

Expected Value of a
Random Variable,
Function of a Random
Variable, Moments
about the Origin

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

06-03-2024

Central Moments,
Variance and Skew
Chebychev’s
Inequality,

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

07.03.2024
&
11.03.2024

Characteristic
Function, Moment
Generating Function,
Transformations of a
Random Variable

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

12.03.2024
&
13.03.2024

Joint Distribution
Function and its
Properties, Margina
Distribution Functions
Conditional
Distribution and
Density

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

14-03-2024

Statistical
Independence. Sum of
Two Random
Variables, Sum of
Several Random
Variables, Centrd
Limit Theorem

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

16.03.2024
&
18.03.2024

Joint Moments about
the Origin, Joint
Central Moments
Joint Characteristic
Functions, Jointly
Gaussian Random
Variables:

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

19-03-2024

Two Random
Variables case, N
Random Variable

case, Properties

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

20-03-2024

Linear
Transformations of
Gaussian Random
Variables

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

21.03.2024

UNIT - 11l Random
Processes -
Temporal

Characteristics The

Peyton Z. Peebles -
Probability, Random Variables
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Random Process
Concept,

23.03.2024
&
26.03.2024

Classification of
Processes,
Deterministic and
Nondeterministic
Processes
Distribution and
Density Functions

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

27.03.2024

concept of Stationarity

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

28.03.2024
&
30.03.2024

Statistical
Independence
Time Averages and
Ergodicity, Mean-
Ergodic Processes,

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

04.04.2024
&
06.04.2024

Autocorrelation
Function and Its
Properties
Cross-Correlation
Function and Its
Properties

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

10.04.2024

Covariance Functions,
Gaussian Random
Processes
Poisson Random
Process.

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

16.04.2024
&
18.04.2024

Convolution
Mean and Mean-
squared Value of
System Response

autocorrelation
Function of Response,

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

23.04.2024

Random Signal
Response of Linear
Systems: System
Response
Correlation-Ergodic
Processes

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

25.04.2024

Random Signal
Response of Linear
Systems: System
Response
Cross-Correlation
Functions of Input and
Output

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

25.04.2024

UNIT -1V Random
Processes — Spectral
Characteristics

Peyton Z. Peebles -
Probability, Random Variables
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& Random Signal Principles,
4" Ed, TMH,2001

29.04.2024

The Power Spectrum:
Properties

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

30.04.2024

Relationship between
Power Spectrum and
Autocorrelation
Function

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

01.05.2024

Relationship between
Power Spectrum and
Autocorrelation
Function

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

02.05.2024

The Cross-Power
Density Spectrum,
Properties

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

04.05.2024

Relationship between
Cross-Power
Spectrum and Cross-
Correlation Function

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

06.05.2024

Spectral
Characteristics of
System Response:

Power Density
Spectrum of Response

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

07.05.2024

Power Density
Spectrum of Response

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

08.05.2024

Cross-Power Density
Spectrums of Input
and Output

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

09.05.2024

Problems

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

10.05.2024

UNIT -V Noise
Sources &
Information Theory

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

03.06.2024

Resistive/Thermal
Noise Source

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

04.06.2024

Arbitrary Noise
Sources
Effective Noise
Temperature

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001
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05.06.2024

Average Noise
Figures, Average
Noise Figure of
cascaded networks

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

06.06.2024
&
07.06.2024

Narrow Band noise,
Quadrature
representation of
narrow band noise &
its properties
Entropy, Information
rate, Source coding

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

08.06.2024

Huffman coding,
Shannon Fano coding

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

10.06.2024

Mutual information,
Channel capacity of
discrete channel

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

11.06.2024

Shannon-Hartley law;
Trade -off between
bandwidth and SNR.
Problems

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

12.06.2024

old question paper
discussions Revision
of Unit ALL UNITS

1234,& 5

Peyton Z. Peebles -
Probability, Random Variables
& Random Signal Principles,
4" Ed, TMH,2001

_.--'—'-1“&:"---3

Signature of HOD

Note:

1. Ensure that all topics specified in the course are mentioned.
2. Additional topics covered, if any, may also be specified in bold.
3. Mention the corresponding course objective and outcome numbers against each topic.
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UNIT PLAN (U-1)

Lesson No: 03, 04 Duration of Lesson: 1hr 30 min

Lesson Title: Joint Probability, Conditional probability

Instructional / Lesson Objectives:

To make students understand the concept of Probability.

To familiarize students on Different types of probability.

To understand students the importance of the joint probability.

To provide information on conditional probability and its properties.

Teaching AIDS : PPTs, Digital Board
Time Management of Class

5 mins for taking attendance
130 min for the lecture delivery
15 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1, 3)

Refer assignment — | & tutorial-l sheets g -

|

Signéturé of faculty
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UNIT PLAN (U-11)

Lesson No: 04, 05 Duration of Lesson: 1hr30 MIN

Lesson Title: Operations on Single and Multiple Random Variables.

Instructional / Lesson Objectives:

To make students understand the concept of Random variables and its types

To familiarize students on Operations on Single and multiple random variables.

To understand students the concept of Expectation, moments, characteristic functions.
To provide information on Transformations of random variables..

Teaching AIDS : PPTs, Digital Board
Time Management of Class :

5 minsfor taking attendance

15 for revision of previous class
55 min for lecture delivery

15 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,34 & 1,3..)

Refer assignment — 11 & tutorial-l sheets

= o
e

Si gn-aturé of faculty
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UNIT PLAN (U-111)

Lesson No: 05, 06 Duration of Lesson: 1hr30 MIN

Lesson Title: Stationary random processes, Autocorrelation functions.

Instructional / Lesson Objectives:

To make students understand the concept of Random processes.

To familiarize students on types of random processes.

To understand students the concept of Stationary and non-stationary random processes.
To provide information on Auto correlation and cross correlation and its properties.

Teaching AIDS : PPTs, Digital Board
Time Management of Class

5 mins for taking attendance

15 for revision of previous class
55 min for lecture delivery

15 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4,5 & 1,3..)

Refer assignment-111 & tutorial-11 sheets. g =

i

Signéturé of faculty
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UNIT PLAN (U-1V)

Lesson No: 01, 02 Duration of Lesson: 1hr30 MIN

Lesson Title: Random Processes Spectral Characteristics.

Instructional / Lesson Objectives:

To make students understand the concept of power spectrum density.

To familiarize students on Relation ship between PSD and auto correlation function.

To understand students the Cross-power density spectrum and its properties.

To provide information on Linear system response of CPSD Input and Output Response.

Teaching AIDS : PPTs, Digital Board
Time Management of Class

5 mins for taking attendance

15 for revision of previous class
55 min for lecture delivery

15 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1, 3.)

Refer assignment-1V & tutorial-11 sheets. . —

et ="

Signature of faculty
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UNIT PLAN (U-V)

Lesson No: 03, 05 Duration of Lesson: 1hr 30 MIN

Lesson Title: Noise sources and Information theory.

Instructional / Lesson Objectives:

To make students understand the concept Noise and its types.
To familiarize students on Source coding techniques.
To understand students the concept of Shannon and Huffman coding.

Teaching AIDS : PPTs, Digital Board
Time Management of Class

5 mins for taking attendance

15 for revision of previous class
55 min for lecture delivery

15 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,34 & 1,3..)

Refer assignment-V & tutorial-11 sheets. E e S

Signature of faculty
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LESSON PLAN

LESSON PLAN FOR THE A.Y. 2023-24

NAME OF THE
FACULTY:

VALAPARLA DAVID

SUBJECT:

PROBABILITY THEORY and STOCHASTIC PROCESSES (EC401PC)

YEAR/COURSE

IIB.

Tech ECE SEM -1l SECTION-A & B

Week
Wise

CLASSES/
WEEK

Date

Topics to be Covered

5-Feb-24

UNIT - | Probability & Random Variable

6-Feb-24

Course Objectives and Course Outcomes

7-Feb-24

NO CLASS

8-Feb-24

Introduction to sets, set types

9-Feb-24

Probability introduced through Sets and Relative Frequency

10-Feb-24

Second Saturday

11-Feb-24

SUNDAY

12-Feb-24

Experiments and Sample Spaces

13-Feb-24

Events and its types

14-Feb-24

NO CLASS

15-Feb-24

Probability Definitions and Axioms

16-Feb-24

Joint Probability

17-Feb-24

Problems

18-Feb-24

SUNDAY

19-Feb-24

Conditional Probability, Total Probability

20-Feb-24

Bay’s Theorem, Independent Events

21-Feb-24

NO CLASS

22-Feb-24

Random V ariable-Definition, Conditions for a Function to
be aRandom Variable,

23-Feb-24

Discrete, Continuous and Mixed Random Variable

24-Feb-24

Distribution and Density functions

25-Feb-24

SUNDAY

26-Feb-24

Binomial, Poisson Uniform, Gaussian

27-Feb-24

Exponential, Rayleigh

28-Feb-24

NO CLASS

29-Feb-24

Methods of defining Conditioning Event

1-Mar-24

Conditional Distribution, Conditional Density and their
Properties

2-Mar-24

UNIT - Il Operationson Single & Multiple Random
Variables

3-Mar-24

SUNDAY

4-Mar-24

Expected Vaue of a Random Variable, Function of a
Random Variable, Moments about the Origin

S5-Mar-24

Central Moments, Variance and Skew

II B. TECH ECE Il SEM




6-Mar-24

NO CLASS

7-Mar-24

Chebychev’s Inequality, Characteristic Function, Moment
Generating Function,

8-Mar-24

MAHA SIVARATRI

9-Mar-24

Second Saturday

10-Mar-24

SUNDAY

11-Mar-24

Transformations of a Random Variable

12-Mar-24

Joint Distribution Function and its Properties, Marginal
Distribution Functions

13-Mar-24

NO CLASS

14-Mar-24

Conditional Distribution and Density

15-Mar-24

Statistical Independence. Sum of Two Random Variables,
Sum of Several Random Variables, Central Limit Theorem

16-Mar-24

Joint Moments about the Origin, Joint Central Moments

17-Mar-24

SUNDAY

18-Mar-24

Joint Characteristic Functions, Jointly Gaussian Random
Variables:

19-Mar-24

Two Random Variables case, N Random Variable case,
Properties

20-Mar-24

NO CLASS

21-Mar-24

Linear Transformations of Gaussian Random V ariables

22-Mar-24

UNIT - 1l Random Processes— Temporal
Characteristics

23-Mar-24

The Random Process Concept, Classification of Processes,
Deterministic and Nondeterministic Processes

24-Mar-24

SUNDAY

25-Mar-24

HOLI

26-Mar-24

Distribution and Density Functions

27-Mar-24

NO CLASS

28-Mar-24

concept of Stationarity and Statistical Independence

29-Mar-24

GOOD FRIDAY

30-Mar-24

Time Averages and Ergodicity, Mean-Ergodic Processes,

31-Mar-24

SUNDAY

1-Apr-24

2-Apr-24

3-Apr-24

| MID EXAMINATIONS

4-Apr-24

Autocorrelation Function and Its Properties

5-Apr-24

BABU JAGJIVAN RAM JAYANTI

6-Apr-24

Cross-Correlation Function and Its Properties

7-Apr-24

SUNDAY

8-Apr-24

Covariance Functions, Gaussian Random Processes

9-Apr-24

UGADI

10-Apr-24

NO CLASS

11-Apr-24

RAMZAN

12-Apr-24

Following Day of RAMZAN
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13-Apr-24

Second Saturday

14-Apr-24

SUNDAY

15-Apr-24

Poisson Random Process.

16-Apr-24

Convolution, Mean and Mean-squared Value of System
Response

17-Apr-24

SRl RAM NAVAMI

18-Apr-24

autocorrelation Function of Response,

19-Apr-24

Cross-Correlation Functions of Input and Output

20-Apr-24

Random Signal Response of Linear Systems. System
Response

21-Apr-24

SUNDAY

22-Apr-24

Correlation-Ergodic Processes

23-Apr-24

Correlation-Ergodic Processes

24-Apr-24

NO CLASS

25-Apr-24

Random Signal Response of Linear Systems: System
Response

26-Apr-24

UNIT - IV Random Processes — Spectral Characteristics

27-Apr-24

The Power Spectrum: Properties

28-Apr-24

SUNDAY

29-Apr-24

The Power Spectrum: Properties

30-Apr-24

Relationship between Power Spectrum and Autocorrelation
Function

1-May-24

NO CLASS

2-May-24

Relationship between Power Spectrum and Autocorrelation
Function

3-May-24

The Cross-Power Density Spectrum, Properties

4-May-24

Relationship between Cross-Power Spectrum and Cross-
Correlation Function

5-May-24

SUNDAY

6-May-24

Spectral Characteristics of System Response: Power
Density Spectrum of Response

7-May-24

Power Density Spectrum of Response

8-May-24

NO CLASS

9-May-24

Cross-Power Density Spectrums of Input and Output

10-May-24

Problems

11-May-24

Second Saturday

12-May-24

SUNDAY

13-May-24

UNIT - 1V Noise Sources & Information Theory

14-May-24

Resistive/Thermal Noise Source

15-May-24

NO CLASS

16-May-24

Arbitrary Noise Sources

17-May-24

Effective Noise Temperature

18-May-24

Noise equivalent bandwidth

19-May-24

SUNDAY
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20-May-24

Average Noise Figures, Average Noise Figure of cascaded
networks

21-May-24

Narrow Band noise, Quadrature representation of narrow
band noise & its properties

22-May-24

NO CLASS

23-May-24

24-May-24

25-May-24

26-May-24

27-May-24

28-May-24

29-May-24

30-May-24

31-May-24

1-Jun-24

2-Jun-24

3-Jun-24

4-Jun-24

5-Jun-24

SUMMER VACATION

6-Jun-24

Entropy, Information rate, Source coding

7-Jun-24

Huffman coding, Shannon Fano coding

8-Jun-24

Second Saturday

9-Jun-24

SUNDAY

10-Jun-24

Mutual information, Channel capacity of discrete channel

11-Jun-24

Shannon-Hartley law; Trade -off between bandwidth and
SNR.

12-Jun-24

NO CLASS

13-Jun-24

14-Jun-24

15-Jun-24

I MID EXAMINATIONS

s Wk '-"""Q

Signature of HOD

E -4l'-""}l

Sigﬁatu;e of faculty
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ASSIGNMENT -1

This Assignment corresponds to Unit No. 1

1) In abox there are 100 resistors having resistance and
tolerance in table. Define three events A as ‘draw a 47-ohm
resistor’, B as ‘draw a resistor with 5% tolerance’. C as ‘draw a
100-ohm resistor’. Find individual probabilities and conditional
probabilities.

22 10 14 24

47 28 16 44
100 24 8 32

TOTAL 62 38 100

ii. Explain the Conditional probability and its properties

State and prove Total probability theorem and baye’s theorem?

Two cards are drawn from a 52 Cards

1. Given the first card is a queen, what is the probability that
the second is also a queen?

2. Repeat part a) for the first card a queen and the second card
a’

3. What is the probability that both cards will be a queen?

e —0) =

Signature of HOD Signature of faculty
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ASSIGNMENT -2

This Assignment corresponds to Unit No. 2

Explain the moment generating function and its properties.

Explain the characteristic function and its properties

— A =
| 2 {:l ,éj/::. e

Signature of HOD Signature of faculty
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ASSIGNMENT -3

This Assignment corresponds to Unit No. 3

Explain the stationary random processes and its types.

Discuss the auto-correlation function and its properties

Discuss the cross-correlation function and its properties

E B 11_‘5.

Signature of HOD Signature of faculty

Il B. TECH ECE Il SEM




ASSIGNMENT -4

This Assignment corresponds to Unit No. 4

Explain the Power Spectral density and its properties.

Derive the relationship between cross power density spectrum
and cross correlation function.

Process.

Explain the Gaussian Random Processes, Poisson Random

B S

Sidnature of HOD

.
=

Signat-ure of faculty
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ASSIGNMENT -5

This Assignment corresponds to Unit No. 5

Explain Average Noise Figure of cascaded networks, Narrow
Band noise, Quadrature representation of narrow band noise &
its properties.

Discuss the Huffman coding, Shannon Fano coding

Discuss the Trade -off between bandwidth and SNR

| i ) { Ty,

Signature of HOD Signature of faculty
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TUTORIAL SHEET -1

Thistutorial correspondsto Unit No. 1 (Objective Nos.: 1, Outcome Nos.: 1)

Q1. A number between 0 and 1 that is used to measure uncertainty is called

A) Random
variable

Q2. A set of al possible outcomes of an experiment is called

B) Trid C) Simple event D) Probability

A) Combination  B) Sample point C) Sample space D) Compound event

Q3. When the occurrence of one event has no effect on the probability of the occurrence of
another event, the events are called.

C) Mutualy

A) Independent B) Dependent exclusive

D) Equaly likely
Q4. Define the sample space
Q5. what isrelative frequency of probability

_.-""—'-11"“ !"“""‘O E: .f_*..l_-)

Signature of HOD Signz;lture- of faculty
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TUTORIAL SHEET -2

Thistutorial correspondsto Unit No. 2 (Objective Nos.: 2, Outcome Nos.: 2)

Q1. What is the mean and variance for standard normal distribution

A) MeanisO B) Meanis1 C) Meanis0and D) Mean is o and

and variance and . s . .
- . . variance 1s oo varianceisO
isl varianceis0

Q2. In a Binomial Distribution, if ‘n’ is the number of trials and ‘p’ is the probability

of success, then the mean value is given by
A) np B) n C)p D) np(1-p)
Q3. Find the mean of tossing 8 coins

A) 2 B) 4 C) 8 D) 6
Q4. If the probability of hitting the target is 0.4, find mean and variance

A) 04,0.24 B) 0.6, 0.24 C) 0.4,0.16 D) 0.6, 0.16

Q5. Expectation of constant is

B) random

A) Constant varible

7 =

.--r=-1rl+r---g E =y

Signature of HOD Sign-aturé of faculty
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TUTORIAL SHEET -3

Thistutorial correspondsto Unit No. 3 (Objective Nos.: 3, Outcome Nos.: 3)

Q1. How many types of random processes

A) 2 B) 3

Q2 Give thetypes of correlation.

A) 3 B) 2 C) 4 D) 5

Q3. The ergodic comes under type random process?

B) Non-
Stationary

Q4. What is the standard form of WSSRP

B) Wide Sense C) Wide Sense
Stationary Stationary D) None of the
Random Random above
particles Processes

D) None of the

A) Stationary above

C) Bothaand b

A) Wide Sense
Stationary
Random
Points
Q5. Which one of the following is constant in wide sense stationary

A) Auto
correlation

) P~

Signature of HOD Sigr;atur-e of faculty

B) mean C) dl satistics D) Bothaand b
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TUTORIAL SHEET -4

Thistutorial correspondsto Unit No. 4 (Objective Nos.: 3, Outcome Nos.: 3)

Q1. For aWSS process, psd at zero frequency gives

A) Auto B) Mean of the C) Variance of the D) Power spectra
correlation process process density

Q2. Power Spectral density of WSS is always

A) Can be
Negative or B) Negative C) Non negative D) Finite
positive
Q3. Time average of auto correlation function and the power spectral density form

C) Laplace D) Fourier

A) Z-Tranform  B) Convolution Transform Transform

Q4. If Rxy =0, then X and Y are

B) Independent
A) Independent and
orthogonal

C) Statistically

independent D) Orthogonal

Q5. If the future value of a sample function can be predicted based on its past values, the processis referred
as

A) Dependent B) Statistical C) Independent D) Deterministic
process process Process Process

g T
Sy ==

Signature of HOD Signature of faculty
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TUTORIAL SHEET -5

Thistutorial correspondsto Unit No. 5 (Objective Nos.: 5, Outcome Nos.: 5)

Q1. The noise due to random behaviour of charge carriersis

B) Partition
noise

A) Shot noise C) Industria noise

Q2. Trangit time noiseis

A) Low
frequency
noise
Q8. Figure of merit y is

B) High
frequency
noise

C) Dueto random
behaviour of
carrier charges

4) Ratio of output
signal to noise
ratio to input
signal to noise
ratio

B) Ratio of input
signal to
noise ratio to
output signal
to noiseratio

C) Ratio of output
signal to input
signal to a system

Q4. Noise Factor(F) and Noise Figure (NF) arerelated as

A) NF=10 B) F=10 _
log10(F) log10(NF) C) NF=10(F)
Q5. The noise temperature at aresistor depends upon

A) Resistance
value

_..--=.1,-+r-=-f3

Signature of HOD

B) Noise power C) Bothaand b

I B. TECH ECE Il SEM

D) Flicker noise

D) Duetoincrease
in reverse current
in the device

D) Ratio of input
signal to output
signal to a system

D) F=10(NF)

D) None of the
above
o

g
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EVALUATION STRATEGY

Target (9)

Percentage of Pass : 90%

Assessment Method (S) (Maximum Marks for evaluation are defined in the Academic Regulations)

Daily Attendance

Assignments

Online Quiz (or) Seminars
Continuous Internal Assessment
Semester / End Examination

List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this
semester

Case Study of any one existing application

AR € e

Signature of HOD Signature of faculty
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COURSE COMPLETION STATUS

Actual Date of Completion & Remarksif any

Completed on 29.02.2024

Completed on 20.03.2024

Completed on 25.04.2024

Completed on 10.05.2024

Completed on 12.06.2024

) -

Signature of HOD Signature of faculty
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M appings

1. Course Objectives-Cour se Outcomes Relationship Matrix
(Indicate the relationships by mark “X”)

Course-Outcomes

Course-Objectives
1

2
3
4
5

2. Course Outcomes-Program Outcomes (POs) & PSOs Relationship Matrix
(Indicate the relationships by mark “X")

C_
Outcomes

CO1
CO2
CO3
CO4
CO5
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Research & Gather
Information

Rubric for Evaluation

Does not collect
any information
that relatesto the
topic

Collectsvery little
information some | ,
relatesto the topic

Collects some
basic
nformation most
relates to the

Collectsagreat
ded of Information
dl relatesto the
topic

Ful fill team role’s duty

Does not perform
any duties of
assigned team role.

Performsvery little
duties.

Performs nearly
al duties.

Performs all duties
of assigned team
role.

Share Equally

Alwaysreieson
othersto do the
work.

Rarely does the
assigned work -
often needs
reminding.

Usually doesthe
assigned work -
rarely needs
reminding.

Always does the
assigned work
without having to
be reminded

Listen to other team
mates

Isadwaystaking—
never allows
anyone elseto

Usually doing most
of the talking--
rarely alows others

Listens, but
sometimes talks
too much.

Listens and speaks
afair amount.
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{(Approved by AICTE. New Delhi & Affiliated to JNTUH) Weww . anuag.oc. in +81 85534922270

II B.TECH IV SEMESTER I MID EXAMINATIONS - APRIL 2024
~y

30
Branch : B.Tech. (ECE) Subject : Probability Theory and Stochastic Max. Marks : 4BV
Date : 0.0, . 224y, Processes, EC401PC Time : 20 Mq

PART --A
ANSWER ALL QUESTIONS 10X 1M =10M

Q.No Question CcO BTL

Define the probability of axioms () CoO1 1
A). B (©). @O

A set of all possible outcomes of an experiment is called () CcoO1

(A). Combination (B). Sample point (C). Sample space (D). Compound event

what is relative frequency of probability () col1

). ®. ©). @O

what is joint probability () CO1

(4. B). (©. O).

Write any two properties of expectation () CcOo2 2
(A). B). (©). (D).

‘What is the mean and variance for standard normal distribution ( ) CcO2 2

(A). Mecan is 0 and variance is 1 (B). Mean is 1 and variance is 0 (C). Mean is 0 and variance
is (D). Mean is and variance is 0

Define the variance () CcO2 1
A). B). (©). ).
if the probability of hitting the target is 0.4, find mean and () CO2 2

variance

(A). 04,0.24 (B).0.6,0.24 (C).04,0.16 (D).0.6,0.16
‘What is stationary random processes

(A). (B). (©. @O).

Give the types of correlation.

(A3 (B).2 (C.4 D).5

ANSWER ANY FOUR
Q.No Question

11. Two cards are drawn from a 52 Cards Given the first card is a
queen,What is the probability that the second is also a queen?
Repeat part a) for the first card a queen and the second card a 7
‘What is the probability That both cards will be a queen?

Explain the probability distribution and density function and its
properties

Explain the characteristic function and its properties

Write short notes on jointly-Gaussian random variables.

Briefly explain the distribution and density functions in the
context of stationary and independent random processes.

State and prove the auto correlation and cross correlation
function properties

Il B. TECH ECE Il SEM
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II B TECH IV SEMESTER II MID EXAMINATIONS - JUNE 2024

Branch : B.Tech. (ECE) Max. Marks : 30M
Date : 18-Jun-2024 Session : Morning Time : 120 Min
Subject : Probability Theory and Stochastic Processes,EC401PC

PART - A
ANSWER ALL THE QUESTIONS 10X 1IM=10M

Q.No Question CcO BTL
1. ‘Which one of the following processes consists of both discrete and () CcO3 1
continuous components?
(A). Discrete random (B). Continuous random (C). Mixed random (D). None of the above
‘What is the standard form of WSSRP () cO3 2
(A). Wide Sense Stationary Random Points (B). Wide Sense Stationary Random particles (C).
Wide Sense Stationary Random Processes (D). None of the above
The mean square value of WSS process equals () COo4 2
(A). The area under the graph of psd (B). Zero (C). Auto correlation (D). Mean of the Process
The collection of all the sample functions is referred as () CO4 2
(A). Ensemble (B). Set (C). Assumble (D). Average
If the future value of a sample function can be predicted based on its () CO4 2
past values, the process is referred as
%A). Dependent process (B). Statistical process (C). Independent Process (D). Deterministic
TOCESS

Power Spectral density of WSS is always () CO4 1
(A). Can be Negative or positive (B). Negative (C). Non negative (D). Finite
The noise temperature at a resistor depends upon ) COs5
(A). Resistance value (B). Noise power (C). Bothaandb (D). None of the above
Figure of merit is () COs 2
(A). Ratio of output signal to noise ratio to input signal to noise ratio (B). Ratio of input signal to

noise ratio to output signal to noise ratio (C). Ratio of output signal to input signal to a system
(D). Ratio of input signal to output signal to a system

Noise voltage Vn and absolute temperature T are related as ) COs5 1
(A). Vi =1/ (4RKTB) (B). Vn=4RK)/ (TB) (C). Vh=(4RKTB) (D). Vn=(4KTB)/R
The noise due to random behaviour of charge carriers is () CO5 2
(A). Shot noise (B). Partition noise (C). Industrial noise (D). Flicker noise
PART -B
ANSWER ANY FOUR 4 X 5M=20M
Q.No Question CcoO BTL

11. Explain the concept of Poisson Random process and time averages of CO3 3
the random process

12. Discuss the covarince of the random processes and linear system CO3 3
response of the mean,mean square value of the random processes

13. Explain the Power Spectral density and its properties. CO4

14. Find the autocorrelation function and power spectral density of the
random process X(t)=Acos(wct+) where is a random variable over the
ensemble and is uniformly distrtibuted over range (0,2)

15.  Find the overall noise figure and equivalent input noise temperature of
the system at room temperature = 270C, gain of the amplifiers G1=15db
& (G2=25db and effective noise temperature values is Te1=100k &
Te2=150k

Discuss the Effective Noise temperature and Noise equivalent
bandwidth.
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Continuous I nter nal Assessment (R-22)

Programme: B. Tech Year: |l Sem: |1 Course: Theory A.Y: 2023-24

Course: PTSP Section: A Faculty Name: VALAPARLA DAVID

22C11A0401 17

22C11A0402 12

22C11A0404 27

22C11A0405 18

22C11A0407 27

22C11A0408 8

22C11A0409 16

22C11A0410 24

22C11A0411 16

22C11A0413 26

22C11A0414 17

22C11A0415 28

22C11A0416 28

22C11A0417 22

22C11A0418 13

22C11A0419 22

22C11A0420 24

22C11A0421 16

22C11A0422 19

22C11A0423 19
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22C11A0424

22C11A0425

22C11A0426

22C11A0427

22C11A0428

22C11A0429

22C11A0430

22C11A0431

22C11A0432

22C11A0433

25

22C11A0434

21

22C11A0435

28

22C11A0436

20

22C11A0437

17

22C11A0438

17

22C11A0439

13

22C11A0440

25

22C11A0441

30

22C11A0442

20

22C11A0443

8

22C11A0444

20

22C11A0445

23

22C11A0446

14

22C11A0447

25

22C11A0448

12

22C11A0449

25
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22C11A0450

22C11A0451

22C11A0453

22C11A0454

22C11A0455

22C11A0456

22C11A0457

22C11A0458

22C11A0459

22C11A0460

No. of Absentees: 02

Total Strength: 56

= _.--l‘—’-|rur----0

Signature of Faculty Signature of HoD
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Continuous I nter nal Assessment (R-22)

Programme: B. Tech Year: |l Sem: |1 Course: Theory A.Y: 2023-24

Course: PTSP Section: B Faculty Name: VALAPARLA DAVID

22C11A0461 28 29

22C11A0462 20 23

22C11A0463 22 18

22C11A0464 24 24

22C11A0465 26 28

22C11A0466 14 13

22C11A0467 11 18

22C11A0469 17 20

22C11A0470 18 15

22C11A0471 26 27

22C11A0472 29 30

22C11A0473 10 12

22C11A0474 22 23

22C11A0475 24 22

22C11A0476 10 11

22C11A0477 26 26

22C11A0478 23 22

22C11A0479 28 28

22C11A0480 28 29

22C11A0481 23 20
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22C11A0482

25 21

22C11A0483

25 27

22C11A0484

28 26

22C11A0485

24 23

22C11A0486

20 17

22C11A0487

25 25

22C11A0488

AB 5

22C11A0489

28 27

22C11A0490

27 26

22C11A0491

22 21

22C11A0492

23 23

22C11A0493

21 17

22C11A0494

AB 0

22C11A0495

17 13

22C11A0496

24 24

22C11A0497

22 20

22C11A0498

23 20

22C11A0499

10 7

22C11A04A0

26 26

22C11A04A1

22 24

22C11A04A2

16 18

22C11A04A3

15 14

22C11A04A4

28 27

22C11A04A5

24 23

23C15A0401

16 17

23C15A0402

21 19

Dept. of ECE




23C15A0403

23C15A0404
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No. of Absentees: 01

Total Strength: 55
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LLABUS

Introduction to probability through sets and probability: Relative frequency; Experiments and sample
spaces, discrete and continuous sample spaces; Events; Probability definitions and axioms; Mathematical
model of experiments; Probability as a relative frequency; Joint probability; Conditional probability, total
probability; Baye’s theorem and independent events.

Random variable: Definition of random variable, conditions for a function to be a random variable, discrete
, continuous and mixed random variable.

Introduction: The basic to the study of probability is the idea of a Physical experiment. A single
performance of the experiment is called a trial for which there is an outcome. Probability can
be defined in three ways. The First one is Classical Definition. Second one is Definition from
the knowledge of Sets Theory and Axioms. And the last one is from the concept of relative
frequency.

Experiment: Any physical action can be considered as an experiment. Tossing a coin,
Throwing or rolling a die or dice and drawing a card from a deck of 52-cards are Examples for
the Experiments.

Sample Space: The set of all possible outcomes in any Experiment is called the sample space.
And it is represented by the letter s. The sample space is a universal set for the experiment.
The sample space can be of 4 types. They are:

1. Discrete and finite sample space.

2. Discrete and infinite sample space.

3. Continuous and finite sample space.
4. Continuous and infinite sample space.

Tossing a coin, throwing a dice are the examples of discrete finite sample space. Choosing
randomly a positive integer is an example of discrete infinite sample space. Obtaining a number
on a spinning pointer is an example for continuous finite sample space. Prediction or analysis
of a random signal is an example for continuous infinite sample space.

Event: An event is defined as a subset of the sample space. The events can be represented
with capital letters like A, B, C etc... All the definitions and operations applicable to sets will
apply to events also. As with sample space events may be of either discrete or continuous.
Again the in discrete and continuous they may be either finite or infinite. If there are N numbers
of elements in the sample space of an experiment then there exists 2N number of events. The event
will give the specific characteristic of the experiment whereas the sample space gives all the
characteristics of the experiment.
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Classical Definition: From the classical way the probability is defined as the ratio of number of
favorable outcomes to the total number of possible outcomes from an experiment. i.e.
Mathematically, P(A) =F/T. Where: P(A) is the probability of event A.

F is the number of favorable outcomes and T is the Total number of possible

outcomes. The classical definition fails when the total number of outcomes

becomes infinity.

Definition from Sets and Axioms: In the axiomatic definition, the probability P(A) of an event
is always a non negative real number which satisfies the following three Axioms.

Axiom 1: P(A) = 0.Which means that the probability of event is always a hon negative humber
Axiom 2: P(S) =1.Which means that the probability of a sample space consisting of all
possible outcomes of experiment is always unity or one.

Axiom 3: P (Un=1N)orP (A1 A2.. . AN)=P (A1) +P (A2) + ...+ P (AN)

This means that the probability of Union of N humber of events is same as the Sum of the

individual probabilities of those N Events.

Probability as a relative frequency: The use of common sense and engineering and scientific

observations leads to a definition of probability as a relative frequency of occurrence of some
event. Suppose that a random experiment repeated n times and if the event A occurs n(A)
times, then the probability of event a is defined as the relative frequency of event a when the
number of trials n tends to infinity. Mathematically P(A) =Lt n->= n(A)/n

Where n (A)/n is called the relative frequency of event, A.

Mathematical Model of Experiments: Mathematical model of experiments can be derived
from the axioms of probability introduced. For a given real experiment with a set of possible
outcomes, the mathematical model can be derived using the following steps:

1. Define a sample space to represent the physical outcomes.

2. Define events to mathematically represent characteristics of favorable outcomes.

3. Assign probabilities to the defined events such that the axioms are satisfied.

Joint Probability: If a sample space consists of two events A and B which are not mutuall
exclusive,
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and then the probability of these events occurring jointly or simultaneously is called the Joint
Probability. In other words the joint probability of events A and B is equal to the relative
frequency of the joint occurrence. If the experiment repeats n number of times and the joint

occurrence of events A and B is n(AB) times, then the joint probability of events A and B is
AR}

il

PiAnB)y=lim, ..

PiANB)=P{A)+P(B)— P(AUB) then
PAUR)=FP(A)+ P(B) —P(ANA) also smce

PANE) =0.P(AUEB) = P(A)+ P(B)
Conditional Probability: If an experiment repeats n times and a sample space contains only
two events A and B and event A occurs n(A) times, event B occurs n(B) times and the joint
event of A and B occurs n(AB) times then the conditional probability of event A given event B
is equal to the relative frequency of the joint occurrence n(AB) with respect to n(B) as n tends
to infinity.

Mathematically,

P (2) = lina, . 258425 yilm)y = O

vk rod &3

L L -

= linnn e ruCEED S

= ()

That is the conditional probability P(A/B) is the probability of event A occurring on the
condition that the probability of event B is already known. Similarly the conditional probability

of occurrence of B when the probability of event A is given can be expressed as

P(2)=22 P(A) % 0 [P(BN A) =P(AN B)]

A P(A)
From the conditional probabilities, the joint probabilities of the events A and B can be expresse«
as

PANB)=P(Z)P(B)Y= P(Z)P(A)

Total Probability Theorem: Consider a sample space, s that has n mutually exclusive events Bn, n=1, 2,
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3,..,N. such that BmNBn=0 for m =1, 2, 3, ....,N. The probability of any event A, defined on this
sample space can be expressed in terms of the Conditional probabilities of events Bn. This

probability is known as the total probability of event A. Mathematically,

PAY=3N_, P () P(Bn)

Proof: The sample space s of N mutually exclusive events, Bn, n=1, 2, 3, ..N is shown in th
figure.

e BibUB:UByU ... UBx =S
Let an event A be defined on sample space s. Since a1s subset ofs.then A NS =Aor
ANS=An[uUl_,Bl=A0or A= UN_.,(An B,)

Applying probabihity P(A) =P [I_lf\,'_ (AN B = IJ‘,\,’_] F(AN 8,)

Smce the events P(A N B,) are mmtally exclusive. by applying axiom 3 of
probability we get,

P(A=3N_P(AN B,).

From the defimition of jomt probabality.
P(ANB,) =P ()F(B,)

Baye’s Theorem: It states that if a sample space S has N mutually exclusive events Bn, n=1,
2, 3,..,N. such that BmNBn=0 for m =1, 2, 3, ...,N. and any event A is defined on this sample

space then the conditional probability of Bn and A can be Expressed as

- g
P(—|P(B,)
P(B./A) = - R ¢~ e 2

n - of A \nrs ol AN\es A 3

f(nlJP-‘B,h Pl )riBz)e. o LEE

Proof This can be proved fiom total probability Theoren. and the definition of conditional
probabilities,

We know that the conditional probability, P (fi—"] = P(B, NA)/P(A).P(A) = 0also
2B, NA)=P (: )P( 8,) And from the total probability theorein
P(A)=3K . P(B, NA)

il
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P(B,NnA)
N, P(Bn NA).

an=

Therefore P(B, /A) =

P(si)P(s,,)
P(B,/A) = -

N P(;—n)man)

~“n=1

P(3-)P(8n)
A
B

Hence Proved.

P(B,/A) =

A

P(;;l)mam P( )P(B;)+...+P(8—n-)P(B )

Independent events: Consider two events A and B in a sample space S, having non-zero

probabilities. If the probability of occurrence of one of the event is not affected by the

occurrence of the other event, then the events are said to be Independent events.
P{ANEB)=FP(AP(B). For P(A) = 0 and P(B) = 0.

If Aand B are two independent events then the conditional probabilities will become

P(A/B)= P(A) and P(B/A)= P(B) . That is the occurrence of an event does not depend on the

occurrence of the other event.

Similarly the necessary and sufficient conditions for three events A, B and C to be independen
P A B) = PCAMPCED
P iA M C) = PLAIP(C)
P{BRA m % = FPLEMNCC) il
P s ry B3 rwnds o= FLCA) i FLLEY o FPILIE ).
are:
Multiplication Theorem of Probability: Multiplication theorem can be used to find out
probability of outcomes when an experiment is performing on more than one event. It states
that if there are N events An, n=1,2, . . . N, in a given sample space, then the joint probability

PlAinA) nAs N J—\N) =P(A1) P(Ax/Ay) P(Aj.-"":ﬂn NA). .. P(AN.-""A1 NnNAn ... A}H}
of all the events can be expressed as

And if all the events are independent, then

PlA; MA: MAs N AN =PA)) P(AY) P(As) . . . P(AN).

N!

: I P. " n : :
Permutations & Combinations: An ordereJar'Eﬂ'h‘gb}hent of events is called Permutation. If there are n
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numbers of events in an experiment, then we can choose and list them in order by two
conditions. One is with replacement and another is without replacement. In first condition, the
first event is chosen in any of the n ways thereafter the outcome of this event is replaced in
the set and another event is chosen from all v events. So the second event can be chosen

again in n ways. For choosing r events in succession, the numbers of ways are n".

In the second condition, after choosing the first event, in any of the n ways, the outcome is

not replaced in the set so that the second event can be chosen only in (n-1) ways. The third

eventin (n-2) ways and the rth event in (n-r+1) ways. Thus the total numbers of ways are n(n-
N!
r (N—r)ir!

N¢
1)(n-2) . . . (n-r+1).
RANDOM VARIABLE

Introduction: A random variable is a function of the events of a given sample space, S. Thus
for a given experiment, defined by a sample space, S with elements, s the random variable
is a function of S. and is represented as X(s) or X(x). A random variable X can be
considered to be a function that maps all events of the sample space into points on the real
axis.Typical random variables are the number of hits in a shooting game, the number of
heads when tossing coins, temperature/pressure variations of a physical system etc...For
variable is X ={0,1,2}

The elements of the random variable X are x1=0, x2=1 & x3=2.

Conditions for a function to be a Random Variable: The following conditions are required for
a function to be a random variable.

1. Every point in the sample space must correspond to only one value of the random variable. i.e. it
must be a single valued.

2. The set {X<x} shall be an event for any real number. The probability of this event is equal to the sum
of the probabilities of all the elementary events corresponding to {X<x}. This is denoted as P{X<x} .

3. The probability of events {X=o} and {X=-o=}are zero.
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Classification of Random Variables: Random variables are classified into continuous, discrete and mixed

random variables.

The values of continuous random variable are continuous in a given continuous sample
space. A continuous sample space has infinite range of values. The discrete value of a
continuous random variable is a value at one instant of time. For example the Temperature,
T at some area is a continuous random variable that always exists in the range say, from T1
and T2. Another example is an experiment where the pointer on a wheel of chance is spun.
The events are the continuous range of values from 0 t0 12 marked in the wheel.

The values of a discrete random variable are only the discrete values in a given sample space.
The sample space for a discrete random variable can be continuous, discrete or even both
continuous and discrete points .They may be also finite or infinite. For example the “Wheel of
chance” has the continuous sample space. If we define a discrete random variable n as
integer numbers from 0 to 12, then the discrete random variable is X = {0,1,3,4.....12}

The values of mixed random variable are both continuous and discrete in a given sample
space. The sample space for a mixed random variable is a continuous sample space. The
random variable maps some points as continuous and some points as discrete values. The

mixed random variable has least practical significance or importance.
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Distribution and density functions: Distribution and density functions definitions and properties;
Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional distribution, methods of
defining conditioning on an event, conditional density, properties. Operation on one random variable
expectations: Introduction, expected value of a random variable, function of a random variable, moments
about the origin, central moments, variance and skew, Characteristic function;, Moment generating

function.

Transformations of a random variable: Monotonic transformations for a continuous random variable;
Non monotonic transformations of continuous random variable; Transformation of a discrete random

variable.

Probability Distribution Function: The probability distribution function (PDF) describes the
probabilistic behavior of a random variable. It defines the probability P {X<x} of the event {X<x}
for all values of the random variable X up to the value of x. It is also called as the Cumulative
Distribution Function of the random variable X and denotes as Fx(x) which is a function of x.
Mathematically, Fx(x)= P{X<x} .

Where x is a real number in the range -~<x<« .

We can call Fx(x) simply as the distribution function of x. If x is a discrete random variable, the
distribution function Fx(x) is a cumulative sum of all probabilities of x up to the value of x. as x
is a discrete Fx(x) must have a stair case form with step functions. The amplitude of the step
is equal to the probability of X at that value of x. If the values of x are {xi} , the distribution
function can be written mathematically as

Fo(x) =31, Plx;) u(x — x;).

1 forx = 0.
0 forx-=10Q

Where u(x) {

If x is a continuous random variable, the distribution function Fx(x) is an integration of all
continuous probabilities of x up to the value of x. Let fx(x) be a probability function of x, a

continuous random variable. The distribution function for X is given by
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"2 '3
D rsity fuarset boey ool = Distribution function of «

is a unit step function and N is the number of elements in x. N may be infinite.
Probability density function: The probability density function (pdf) is a basic mathematical

tool to design the probabilistic behavior of a random variable. It is more preferable than PDF.
The probability density function of the random variable x is defined as the values of
probabilities at a given value of x. It is the derivative of the distribution function Fx(x) and is

denoted as fx(x). Mathematically,
fx(x) =

Where x is a real number in the range -~<x<~

dFX (x}

We can call fx(x) simply as density function of x. The expression of density function for a

discrete random variable is
fx(x) = XV, P(x;) 6(x — x,).

From the definition we know that

fy(x) =220 AT PEO el p(y,) 2ET0 5N | p(x,) 8(x — )

Since derivative of a unit step function u(x) is the unit impulse function &(x) . And it is defined
as

1 forx=20
0 satherwizse

5{IJ={

For continuous random variables, since the distribution function is continuous in the given
range, the density function fX(x) can be expressed directly as a derivative of the distribution
function. i.e.

(

fx(x )— where -0 < x < «

Dept. of ECE




Properties of Probability Distribution Function: If FX(x) is a probability distribution function of a random

variable X, then

(iv) Fx(x1) < FX(X2) 1 x1<x
™) Plx, =X< x,) = Fx(xy) - Fx(xy)
(vi)  Fx(xX") =Fx(x) = Fx(x)

Properties of Probability Density Function: If fX(x) is a probability density function of a random variable

X, then

(i) 0 < fy(x) for all x.

i) [ frmdx=1

(i) Fx(x)=["_fyeo dx

(iv) P{x, <X < x,J= j;f frm dx

Real Distribution and Density Function: The following are the most generally used distribution and
density functions.

. Gaussian Function.

. Uniform Function.

. Exponential Function.
. Rayleigh Function.

. Binomial Function.

. Poisson’s Function.

. Gaussian Function: The Gaussian density and distribution function of a random variable X are given

- i s 32 g 3 -
III: R = ’EF: E'_I"t_nx'l JI"IEI'TH_ for all x.
W vx

Fxlx) = [F e—C-ax)® 25,2 dx  forallx

| 2 of =
v:ﬂd’x- 1
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ﬂ-n-u.ﬁ,.. o e O

o Pl

Where Ox >0, -0 =y = 0. Are constants called standard deviation and mean values of X

respectively. The Gaussian density function is also called as the normal density function. The plot of Gaussian
density function is bell shaped and symmetrical about its mean value ax. The total area under the density function

is one.

ity Dtribution

Applications: The Gaussian probability density function is the most important density
function among all density functions in the field of Science and Engineering. It gives
accurate descriptions of many practical random quantities. Especially in Electronics &
Communication Systems, the distribution of noise signal exactly matches the Gaussian
probability function. It is possible to eliminate noise by knowing its behavior using the
Gaussian Probability density function.

2. Uniform Function: The uniform probability density function is defined as

1
fx(X) = { /(b—a)
0 ather wise

a<=x<25b

Where @’ and ‘b’ are real constants, =0 < a < <0. And b > a. The umform disuibution
£ £47 7%
fanction 18 Fx(x) = fx(x)dx

| : _lx-a)

Fy(x)=[" >
X 'u (b-a) (b-a)

Fxla) = 0.

" (b-a)
Fx(®)=———=1.
' (b-a}
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Lecture Notes Probability 1'heory and dtochastic Processes

0 forx >a
_ g (x—a)/ S b
fheretore Fx(x) = < /(x—b) a=x=

X =>b

Applications: 1.The random distribution of errors introduced in the round off process is

uniformly distributed. 2. In digital communications to round off samples.

3. Exponential function: The exponential probability density function for a continuous random variable,

X is defined as

Where a and b are real constants |, «¢ = a = w0 And b > 0 The distribution finction is

Fx(x) :-'..i.-_. fy (x)dx

x—3)

FxlX) :_l:i;-e dx
FylX) = 1- e~Cx-a)it

Therefore

0
Fx(x)=11- e'L;)*u
!
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Lecture Notes Probability 1'heory and dtochastic Processes

fin) & NEEE o

Applications: 1. The fluctuations in the signal strength received by radar receivers from
certain types of targets are exponential. 2. Raindrop sizes, when a large number of rain storm

measurements are made, are also exponentially distributed.

4. Rayleigh function: The Rayleigh probability density function of random variable X is defined as

(x —a)e >/t for x = a

forx < a

%) = { 5
* 0

Where a and b are real constants

== d}.‘

ﬂ <1 |:I-|::|1 £ F:.;'_-f w1 =J;;- Fl_}"L'l_lLr = —ag—¥|*

a
Fxix) = 1- [E—lx—nl-‘;b
Therefore
0
Fudx)= 1 _{E—c.x—mz,f:.-
1
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1

Applications: 1. It describes the envelope of white noise, when noise is passed through a
band pass filter.2. The Rayleigh density function has a relationship with the Gaussian density
function.3. Some types of signal fluctuations received by the receiver are modeled as
Rayleigh distribution.

5. Binomial function: Consider an experiment having only two possible outcomes such as one or zero;
yes or no: tails or heads etc... If the experiment is repeated for N number of times then the Binomial

probability density function of a random variable X is defined as

(%) = XN o Noy P¥(1 — p)¥*6(x — k)

Fx(x) = X¥—0 Nep PF (1 — p)¥ Fu(x — k)

N(;‘ N!

K (N—K)Ik!

Applications: The distribution can be applied to many games of chance, detection problems

i

in radar and sonar and many experiments having only two possible outcomes in any given
trial.
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Lecture Notes Probability 1'heory and dtochastic Processes

6. Poisson’s function: Poisson’s probability density function of a random variable X is defined as

fx(x) =e™? Yk- 0_5(95 — k)

k
— —b oc b ’
Fx(x)=e E;f:,:,g u(x — k)
Poisson’s distribution is the approximated function of the Binomial distribution when N
Llec and pJO .
Here the constant b=Np. Poisson’s density and distribution plots are similar to Binomial

density and distribution plots.

Applications: It is mostly applied to counting type problems. It describes 1. The number of
telephone calls made during a period of time. 2. The number of defective elements in a given
sample. 3. The number of electrons emitted from a cathode in a time interval.4. The number
of items waiting in a queue etc...
Conditional distribution Function: If A and B are two events. If A is an event {X<x} for random
variable X, then the conditional distribution function of X when the event B is known is
denoted as FX(x/B) and is defined as

Fx(x/B) = P {X < x/B}
We know that the conditional probability

P(A/B) =208 ”“1”3* Then Fx(x/B) 25205 ”; ;;’B-*

The expression for discrete random variable is
s | _ N X - .
Fx(/B) =X, P (3) u(x — x;)
The properties of conditional distribution function will be similar to distribution function and

are given by

i) Fal—oo /BY =10,

(i) Fx(wy/B) =1

(iidy O = Feue; = 1.

(i) Falxpm) = FX(x2/B) if 5<%

(V) Pix, = X = x./B} = Fsl(x./B) - Fulx,,5)

(wih Fxix /B) = Fx(xB) = F(x/"B)
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Conditional density Function: The conditional density function of a random variable, X is

defined as the derivative of the conditional distribution function.

aF &
fy(x/B) = —X2
x(X/B) .
For discrete random variable

fx(x/B) =X, P (%) 0(x —x;)

The properties of conditional density function are similar to the density function and are given
by

(i) 0 < fx(x/B) for all x.
i) [ fyom dx=1
Fx(¥/B) = [~ fywxsm) dx.
(iv) P{x,<X < x,/B}= f;lz fyoxrm) dX
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UNIT-II
MULTIPLE RANDOM VARIABLES AND OPERATIONS
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SYLLABUS

Multiple random variables: Vector random variables, joint distribution function, properties of joint
distribution; Marginal distribution functions, conditional distribution and density: Point conditioning,
conditional distribution and density: Interval conditioning, statistical independence, sum of two random
variables, sum of several random variables; Central limit theorem.

Operations on multiple random variables: Expected value of functions of random variables: Joint
moments about the origin, joint central moments, joint characteristic functions and jointly Gaussian
random variables: Two random variables case and N random variable case, properties; Transformations

of multiple random variables; Linear transformations of Gaussian random variables.
INTRODUCTION

In many practical situations, multiple random variables are required for analysis than a single
random variable. The analysis of two random variables especially is very much needed. The
theory of two random variables can be extended to multiple random variables.

Joint Probability Distribution Function: Consider two random variables X and Y. And let two
events be A{X < x} and B{Y<y} Then the joint probability distribution function for the joint
event {X < x, Y=y} is defined as FX,Y (x, y) = P{ X < x, Y<y} = P(ANB)

For discrete random variables, if X = {x1, x2, x3,..,xn} and Y = {y1, y2, y3,.., ym} with

joint probabilities P(xn, ym) = P{X= xn, Y= ym} then the joint probability distribution
function is

Pq_;‘rrw,ri-r-.FJ=E‘:f= 1 Zme1 PG, ym)u(x — xp) u(y — ym )

Similarly for N random variables Xn, where n=1, 2, 3 ... N the joint distribution function is
given as Fx1,x2,x3,..xn (x1,x2,x3,..xn) = P{X1< x1, X2< x2, X3< x3, Xn <xn}

Properties of Joint Distribution Functions: The properties of a joint distribution function of two

random variables X and Y are given as follows.

(1) FX,Y (-00,-00) =0
FX, Y (x,-00) =0
FX,Y (-,y)=0
(2) FX,Y (o0,00) =1
(B 0<FXY(x,y)<1
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(4) FX, Y (x, y) is a monotonic non-decreasing function of both x and y.

(5) The probability of the joint event {x1< X<x2, y1 <Y <y2}is given by
P{x1<sXsx2,yl<sY<sy2}=FX,Y (x2,y2)+FX,Y (x1,y1)-FX, Y (x1,y2) - FX, Y (x2, y1)
(6) The marginal distribution functions are given by FX, Y (x, =) = FX (x) and FX, Y (o, y) = FY (y).

Joint Probability Density Function: The joint probability density function of two random
variables X and Y is defined as the second derivative of the joint distribution function. It can
be expressed as

~ 9% Fx_y[:x-}’)
tky(X. y) = axdy
It is also simply called as joint density function. For discrete random variables X = {x1, x2,

x3,...xn}and Y = {y1, y2, y3,.., ym} the joint density function is

[l T
Iy yrtwan) = E E P(Xn. YmIO(X — Xn) (¥ — ¥m )

Fil= 1 FFi=— 1

By direct integration, the joint distribution function can be obtained in terms of density as

F xy®y) = f—xoo Eoo f x, YY) dx dy

For N random variables Xn, n=1,2,..N, The joint density function becomes the N-fold partial
derivative of the N-dimensional distribution function. That is,

2
x1.x2.x3. xN*LX2.X3 ... XN)

@xlﬂx26x3

fm_ .5, (X X0 Xs. .. XD =

By direct integration the N-Dimensional distribution function is

-

- X1 X2 ;X3
Fxi, @ xveeoenoofXeX0.Xs....X10) :l‘ I‘ ‘\

g A - Y -0

XN » ¢
-----_‘_q,f.n.\'z,\'.: N azaz. o) 3% OX

l.'].\} - ...L'lX?:
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Properties of Joint Density Function: The properties of a joint density function for two random

(1) fxv (X, 9 =0 A Joint probability density function is alwavs non-negative,
A o0 o0 - - . - . .
2 [ 1 f_.:,. /X_yf-._w dx dy =] re. the area under the density function cwve i1s always

equals 10 one

(3) The joint distribution function is always equals to
X Yy g
FX.Y| ‘l'..v_’ — f_ oo f—ﬂ" / X'},r'-\._l ) dl' d}'

(4) The probability of the jomt event [x1= X =x2. vl = Y = y2}1s given as
variables X and Y are given as follows:

'n - - a - F ™ a r. — 2 .'.:"IJ 3
F‘ I"L. G -."1. = :‘:..;. },r] i T:. B~ ::' T -F.l.l. -r|.-'.1. IH.-:'.-|.|_..||| el v

(5) The margmal distmibution fimction of X and % are

X ey
Foetnr = 50 [0 f i ey

oo ¥
Fj.-"':}’j — J—_.:::‘ f—e:,r:rf.k',}" W e dy

(6) The marginal density Aimcrions of X and Y are
) -
f_xq.s.': = f_m -fx.?“‘*-"' dyv

N s .
r ].-"':'5'] — _I:r}fk-]'i_r'ih'j':l dx
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Conditional Density and Distribution functions:

Point Conditioning: Consider two random variables X and Y. The distribution of random
variable X when the distribution function of a random variable Y is known at some value of y

is defined as the conditional distribution function of X. It can be expressed as
-
'-— f.:'l:' FI X, '!,'| I'i.:[.

Fx (x/ Y=y) =
-Fy'l:'_'- ]

and the condinional density function of X 1s

i (% Y=v) = :7 [Fx (% Y=V¥)]

'l.-
r.rln_,‘-f .rl.!: Wi
-irrIJ-'I

- » -lr_ .lr LTa
fi (x/ Y=vy) = X" o1 wwe can simply write fi (x/y) = X¥&9

¥ 1 ¥} F i)

Similarly, the conditional density function of ¥ is

'r.'-'.'..':""-"" ¥
fxi.l.':

fy (VX)) =
For discrete random variables, Consider both X and Y are discrete random variables. Then
we know that the conditional distribution function of X at a specified value of
+Ay N - B :
3 o E Ty Py Jutx—xi) u(y=y;)
Fx (y-By <Y<y HAy) ==—ymay ey
] N ul v—v.
uj:y-A'y y] l( ) y] )

Aty= V%, Ay =0

LX)
Fx (XY=y) =X, p_, L u(x-x,)
Plyg)

Yk is given by
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Then the conditional density function of X is
plxiy;)
f (VY=yi) =3, —— §(x-x;
p(y,)
Similarly, for random variable Y the conditional distribution function at x

_EN plx R.}’j
plx;)

Fy (v/xg) u(y-y;)

And conditional density function is

fy (y/x) =XV 2% ”’” 5(y-y;)

Interval Conditioning: Consider the event B is defined in the interval y1 <Y < y2 for the
random variable Y i.e. B = { y1 <Y < y2}. Assume that P(B) =P(y1 < Y < y2) 0, then the
conditional distribution function of x is given by

"r ga fX,Y['T‘y} dx dy

Fx (W y1<Y<y
Al Y1 = =¥ B
~ry1 f}’{.}"] dy

We know that the conditional density function

J;ffv“"‘ii" f fLufS:‘}'L"“dr:fy

¥z .l|. ]
.-r o F.T.F.".:"'Ill dax d 3

£ J_mf

xVEY) gy ay

Or Fx(xyi=Y <yw)=

By differentiating we can get the conditional density function of X as

yz f d 7
kXn=Yswyn)= ,gmf v
"r}rl I f}f J},{x,}'] dx dy

Similarly, the conditional density function of Y for the given interval x1 < X < x2is

x 2

_]'”_ f}r,i_.._.l aa

S L
Lt j"-‘”f'r viEN] g dy

iy (v x =X = x3)) =
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Statistical Independence of Random Variables: Consider two random variables X and Y with
events A= {X< x } and B = {Y <y} for two real humbers x and y. The two random variables
are said to be statistically independent if and only if the joint probability is equal to the product
of the individual probabilities.

P {X=<x,Y <y} P{X<x} P {Y <y} Also the joint distribution function is

Fyyon=FymFyo

And the joint density function is

f Xy~ f X @ f v
These functions give the condition for two random variables X and Y to be statistically
independent. The conditional distribution functions for independent random variables are
given by

F_\_-__'rl:-'- e F_!.ill u l"r'-|,--C_.':

X W=y —TF o W —
Fx (3 % —%) Fx (% %) - =

Therefore Fx (x/'y) = Fx (x)
Also Fy (y/ x) = Fy (y)

fx ()= f
A xx) > [ xy —
fy (v/ ¥) = fyo
Similarly, the conditional density functions for independent random variables are

Hence the conditions on density functions do not affect independent random variables.

Sum of two Random Variables: The summation of multiple random variables has much
practical importance when information signals are transmitted through channels in a

communication system. The

X and Y available at the receiver is W =X+Y
If Fx (x) and Fy (y) are the distribution functions of X and Y respectively, then the probability
distribution function of W is given as Fw (w) =P {W<w }= P {X+Y<w }.Then the distribution

function is

oo x .
.!'_1!._r1 "\":'=J-—-|':'h J-__'..:., f X_.}-H:*I"'-P ff.*" “F_‘”

Since X and Y are independent random variables,
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fxyen= [y fyom

Therefore

Fw(w}=f_mm fy{.'lr'] fi;y f,‘-{{x) dx dy

Differentiating using Leibniz rule, the density function is

IH.'-H" — I"”..J'-.- L o]

Similarly it can be written as

fW(W:' — fjom fX{r] f}rEw—x] dx

This expression is known as the convolution integral. It can be expressed as

fwowm = fy *fro

Hence the density function of the sum of two statistically independent random variables is

equal to the convolution of their individual density functions.

Sum of several Random Variables: Consider that there are N statistically independent random

variables then the sum of N random variables is given by W=X1+X2+X3+..+XN.

Then the probability density function of W is equal to the convolution of all the individual

density functions. This is given as

fwg\c_a = fxli_.-:l_: o f_j;'?(_-'ig::' " fxﬁ'l-'ia.? Fo* f_:l.,;'ni-*‘r-.r)

Central Limit Theorem: It states that the probability function of a sum of N independent
random variables approaches the Gaussian density function as N tends to infinity. In
practice, whenever an observed random variable is known to be a sum of large number of
random variables, according to the central limiting theorem, we can assume that this sum is
Gaussian random variable.

Equal Functions: Let N random variables have the same distribution and density functions. An
Let
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Y=X1+X2+X3+..+XN. Also let W be normalized random variable

Y-¥

So
Yn—1Xn—Yn—
[Zﬂ._ an ]

Since all random variables have same distribution

JX _JX [ZN 1UXTL2]E — 4/ JX m JX and XTI X

Therefore

) B
W= TN on n=1(Xn —X)

Then W is Gaussian random variable.

W= 1 ,2

Unequal Functions: Let N random variables have probability density functions, with mean and

variance. The central limit theorem states that the sum of the random variables

W=X1+X2+X3+..+XN have a probability distribution function which approaches a Gaussian

distribution as N tends to infinity.

Function of joint random variables: If g(x,y) is a function of two random variables X and Y with

joint density function fx,y(x,y) then the expected value of the function g(x,y) is given as

g =E[gx.y)]

g :f_i f:: g(x, y)f;{_y(my]dx dy

Similarly, for N Random variables X1, X2, . . . XN With joint density function fx1,x2, . . .

Xn(x1,x2, ... xn), the expected value of the function g(x1,x2, . . . xn) is given as

i I Y R TC P S0 ) R PO L LS

1xz, . XN
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Joint Moments about Origin: The joint moments about the origin for two random variables, X, \
is the expected value of the function g(X,Y) =E( X",Y¥) and is denoted as mnk..

Mathematically,
oo oo
My =E [X" Y¥]= [ [ _x"y*fy ymdxay

Where n and k are positive integers. The sum n+k is called the order of the moments. If k=0,
then

myo =E [X] =X = fi f:ﬁ X[y yxadxdy

- — oo oo
ny; =E [‘J_] =Y = f—:v: f—:x: yijy{x.}-}dx dy
The second order moments are m20= E[X2] ,m02= E[Y2] and m11 = E[XY]

For N random variables X1, X2, . .. XN, the joint moments about the origin is defined as

. —_ n no ny
Mpin2,. .. aN = E[Xl 1;X2 reo 'XN ]

%0 " n n n i
f—:_z‘ * -f_x:Xl 1,X2 2,- . 'XN Nf (Vxl'xz,. . ..YN) dxlde r w nde

X1xz, . XN

Where n1,n2, . .. nN are all positive integers.

Correlation: Consider the two random variables X and Y, the second order joint moment
m11 is called the Correlation of X and Y. | tis denoted as RXY. RXY =m11 = E [XY] =

J-_j;: fj; xyij}ri.r,_}-’]ld.r dy

For discrete random variables

Rxy = Eﬂ:lzgizl Xn Ym PXY (*n,Ym)
Properties of Correlation:

1. If two random variables X and Y are statistically independent then Xand Y are said to be uncorrelated.
That is RXY = E[XY]= E[X] E[Y].

Proof: Consider two random variables, X and Y with joint density function fx,y(x,y)and
marginal density functions fx(x) and fy(y). If X and Y are statistically independent, then we
know that fx,y(x,y) = fx(x) fy(y).

The correlation is
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Ry~ ) | xyf peof o dx dy.

:fj; X f;f'fxl dx f_{ﬂm}? f},{}’} d}f.

Ry = E[XY]= E[X] E[Y].

2. If the Random variables X and Y are orthogonal then their correlation is zero. i.e. RXY = 0.

Joint central moments: Consider two random variables X and Y. Then the expected vahies
of the finction g(x.y)=(x — X)"(y — ¥)* are called joinr central moments. Mathematically
ax =E[(x — X)"(y — ¥)*]

= jj I (x—X)"(y = V)" f, yoer dx dy =0. Where 1. k are positive integers0.1.2.... The

order of the central moment is u+k, The 0™ Order central mowment is ue = E[1]=1. The first
order central moments are p, o =E[x-X] =E[X] -E[ X]=0and po, =E[v-¥] =E[¥] -E[ ¥]=0. The

secomkl order Cellfl'ﬂl OIS a1
Hao =E[(x — szlzoxz- toz =E[(y — V;:]:UW and p,, =Ef(x — ml(y ) W‘]: Oyy

For N random Vatiables Xi. Xo. | Xx . the jomnt cenmal moments are defined as
Bpina, . .aN = E[Ce, — X1 )™ (%2 — X" . o 2 (y — Xy)™]

me. . me (e =X )™M (o —X) "2y —
AN) nNfxlx2,. . aN(x1lx2,. . xN)drldy2. . .dxlV

The order of the joint central moment n;+n,+. . +ny.

Proof: Consider two Random variables X and Y with density functions fx(x) and fy(y). If X
and Y are said to be orthogonal, their joint occurrence is zero. That is fx,y(x,y)=0.

Therefore the correlation is
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Covariance: Consicer the random variables X and Y. The second order joint central moment

41y, 1s called the covanance of X and Y. It 1s expressed as Cyy= oxy = pty,=E[x-X] E[v-¥]

o= [ 2 (x—0'y -V f, om dx dy

For discrete random variables Xand Y, Gy = IV, YK (% — X)2 (Ve — Vi )*P(%0 Vi)

Corvelation coefficient: For the random wvartables X and Y, the normalized second order

Central moment 1s called the correlation cocfficient It 1s denoted as p and 1s grven by

p= May  _  Cyxy _ Cyy _ axy _E[x-X]Ely-¥]

JHzolo2 Joxioy® dxoy oxoy GrUy

Properties of p. 1. The range of correlation coefficient 1s -1< p< 1.
If X and Y are independent then p=0.
3. If the correlation between X and Y 1s perfect then p£1.
4. If X=Y, then p=1.

Properties of Covariance:

1. If Xand Y are two random variables, then the covariance is

Cxy=Rxyv- X Y

Proof: If X and Y are two random variables. We know that
Cey E(x-X] E[v-Y]

= E[XY- XY-YX- XY]

= E[XY]- E[XY]-E[YX]-E[ X¥V]

= E[XY - XE[Y]-YE[X]-XYE[1 ]

=E[XY]- X ¥Y-Y X+ XY

= E[XY]- X ¥

2. If two random variables X and Y are independent, then the covariance is zero. i.e. CXY = 0. But

the converse is not true.
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Proof; Consider two random variables X and Y. If X and Y are independent, We know that
E[XY=EIXIE[Y] and the covanance of X and Y 18

=Cxr=XY-X¥V =0.
3. If Xand Y are two random variables, Var(X+Y) = Var(X) + Var(Y) + 2 CXY.

Proof: If X and Y arc two random variables, We know that Var(X)=0y2 = E[XJ-E[X])’
Then Var(X+Y) = E[(X+Y )\ [-E[X+Y])’

= E[X*+Y*2XY]-(E[X] +E[Y])?

= E[X*]+E[ Y ]+2E[XY]-E[X]-E[Y]-2E[X]E[ Y]

= E[X%]- E[X]*+E[Y?] -E[Y]*+2(E[XY]-E[X]E[Y])

— (]_Xz +G_}r2+ 2 C‘X‘&’.

Therefore Var(X+Y) = Var(X) + Var(Y) + 2 Cxy. hence proved.

4, If Xand Y are two random variables, then the covariance of X+a,Y+b, Where ‘a’and ‘b’ are

constants is Cov (X+a,Y+b) = Cov (X,Y) = CXY.

Proof. If X and Y are two random variables, Then
Cov(X+a. Y+H)=E[((X+a)-(X + a) (Y+)-¥ + b}]

= E[(X+a-X-a)(Y+1-F-b)]

= E[(X -X)(Y-¥)]

Therefore Cov (X+a.Y+b) = Cov {X.¥) = Cxy hence proved
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5. If X and Y are two random variables, then the covariance of aX,bY, Where ‘a’and ‘b’ are

constants is Cov (aX,bY) = abCov (X,Y) = abCXY.

Proof: Proof: If X and Y are two random variables. Then

Cov(aX.bY)=E[((aX)-(aX) (bY-bY)]

= E[a(X -X)b(Y-Y)]

= E[ab(X -X)(Y-Y)]

Therefore Cov (aX.bY) = abCov (X.Y) = abCxy_ hence proved.
6. If X, Y and Z are three random variables, then Cov (X+Y,Z) = Cov (X,Z) + Cov (Y,Z).

Proof We know that Cov(X+Y.Z)=E[((N+Y )X + V) (Z2-2)]

= E[X+Y-X — ¥ (Z-2)]

=E[(X —X) + (Y — ¥)) {(Z-2)]
=EX -X)Z— 2)] + E[(Y —Y) (Z-2)]

Therefore Cov (X+Y.2) = Cov (X.2) + Cov (Y.Z2). hence proved.

leint charactevistic Function: The joint characteristic function of two random variables X
ind Y 15 defined as the expected value of the jomt fimction gix.y)=e/@¥ o/«2¥ Tt can be
:Xpl’C“:\?:‘d as ":.\'.}"““ 212} = E[e]lulx"g)'u- E)’.]z e JuwiX 4 Juw2Y \NI]CI'C wl (l"fi (u2 are rc:‘]

cariables
Mherefore Dy pwnany = [C, [0, @/@3X /02 f v dx dy,

Muas 15 known as the two dunensional Fourler wansform with signs of wl and w2 arc
eversed for the jomn density finction. So the mverse Fowrier nansform of the jomt
sharacteristic fimcnion gives the jomt density fimction agam the signs of wl and w2 are
i —

eversed, 1e. The jomt demsity function 15 f_jxn= o3 y@ ~UeiX a2y 4.,

—X.Y arical

1(1)2
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Joint Moment Generating Function: the joint moment generating function of two random
variables X and Y 1s defined as the expected value of the jomt function g(x.vi=e®Xe®2¥ It

can be expressed as
My o162 = E[e?1% 202V = o P15102Y WWhere 91 and 92 are real variables.

- — [ [T ofiX+82Y e
Therefore My yenon = [[_ [ e 5490 f i dxdy.

And the jomt density function is

f‘,__‘,:x,v = J:; .[T Mx.yru.o:-.e_'al‘\"ﬂ"] dd1 492

Gaussian Random Vadables:

(2 Random variables): If two random varnables X and Y are saud 1o be jountly Gaussian, then
the joint density function s given as
(x=X1* _ 2p((X-X){(¥Y-¥) (\'—Y—)‘]

f\'._‘»"x "= : T eNpY [ 2 + 2

2royoyf1-p7 2(1-p*) * ax T Oy oy

This 1s also called as bivanate Gaussian density function

N Random variables: Consider N random variables X,. n=1.2. . . . N. They are saud to be

jomtly Gaussian if their jomt density function(N variate density function) 1s given by

= e ¢ ~[X -S¥F[Cx1 X -8],
gl FERE Y T (2amyNiTcy |2 CXP A > b

Where the covarnance matrx of N random vartables 1s

v Cisivs B X, — X,

“

1 >
[Gl=[C2 Ca... G| x-mq%2—%

Cnvi  Cyaz Cun r." — Xan
[X — X]' = transpose of [X — X]

| Cx |= deternunant of [Cx]

And [[Cx]~*] = inverse of [Cy].

The jomt density fimction for two Gaussian random variables X; and X can be derived by

subsunrme N=2 m the formmula of N Random variables case.
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Properties of Gaussian Random Variables:

1. The Gaussian random variables are completely defined by their means, variances and covariances.
2. If the Gaussian random variables are uncorrelated, then they are statistically independent.

3. All marginal density functions derived from N-variate Gaussian density functions are Gaussian.

4. All conditional density functions are also Gaussian.

5. All linear transformations of Gaussian random variables are also Gaussian.

Linear Transformations of Gaussian Random variables: Consider N Gaussian random variables Yn, n=1,2,
...N. having a linear transformation with set of N Gaussian random variables Xn, n=1,2, .. .N. The linear

transformations can be written as

Y A3 Q2. -« Qin
Y2|_|az1 ay... azn

The transformation T 1s

N

A3 Qi2- .. Qy
a Ar5. .+ » a
[T]= 2:1 = zgv

ayiy Qapz- - - Any

Therefore [Y]=[T] [X]. Also with mean values of X and Y. [Y-Y] =[T] [X-X].

And [X-X]=[T]" [Y-7].
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UNIT-III
STOCHASTIC PROCESSES: TEMPORAL
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INTRODUCTION
The random processes are also called as stochastic processes which deal with randomly

varying time wave forms such as any message signals and noise. They are described
statistically since the complete knowledge about their origin is not known. So statistical
measures are used. Probability distribution and probability density functions give the
complete statistical characteristics of random signals. A random process is a function of both
sample space and time variables. And can be represented as {X x(s,t)}.

Deterministic and Non-deterministic processes: In general a random process may be
deterministic or non deterministic. A process is called as deterministic random process if
future values of any sample function can be predicted from its past values. For example, X(t)
= A sin (w0t+©), where the parameters A, w0 and © may be random variables, is
deterministic random process because the future values of the sample function can be
detected from its known shape. If future values of a sample function cannot be detected from
observed past values, the process is called non-deterministic process.

Classification of random process: Random processes are mainly classified into four types
based on the time and random variable X as follows. 1. Continuous Random Process: A
random process is said to be continuous if both the random variable X and time t are
continuous. The below figure shows a continuous random process. The fluctuations of noise

voltage in any network is a continuous random process.

t
/‘\/‘\i //‘\\ /’\
Rl ot o Yo /

(a) | Sampie function of a continuous i';l.?.?r/u”.‘ process

2. Discrete Random Process: In discrete random process, the random variable X has only discrete values
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while time, t is continuous. The below figure shows a discrete random process. A digital
encoded signal has only two discrete values a positive level and a negative level but time is

continuous. So it is a discrete random process.

3. Continuous Random Sequence: A random process for which the random variable X is continuous but t
has discrete values is called continuous random sequence. A continuous random signal is defined only at
discrete (sample) time intervals. It is also called as a discrete time random process and can be represented

as a set of random variables {X(t)} for samples tk, k=0, 1, 2,....

\ J i
\

‘\u"h"[’/a' unchon ol aq mrf."l.’.'mu\ mmlum m/m'm ¢

4. Discrete Random Sequence: In discrete random sequence both random variable X and time t are
discrete. It can be obtained by sampling and quantizing a random signal. This is called the random process
and is mostly used in digital signal processing applications. The amplitude of the sequence can be

guantized into two levels or multi levels as shown in below figure s (d) and (e).
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r

(e) Sample function of adiscrete random sequence (multi levels)

lr

Joint distribution functions of random process: Consider a random process X(t). For a single
random variable at time t1, X1=X(t1), The cumulative distribution function is defined as
FX(x1;t1) = P {(X(t1) x1} where x1 is any real number. The function FX(x1;t1) is known as the
first order distribution function of X(t). For two random variables at time instants t1 and t2
X(t1) = X1 and X(t2) = X2, the joint distribution is called the second order joint distribution
function of the random process X(t) and is given by FX(x1, x2 ; t1, t2) = P {(X(t1)< x1, X(12)<
x2}. In general for N random variables at N time intervals X(ti) = Xi i=1,2,..N, the Nth order
joint distribution function of X(t) is defined as FX(x1, x2.... xN ; t1, t2,..... tN) = P {(X(t1)< x1,
X(t2) =x2,.... X(tN)< xN}.

Joint density functions of random process:: Joint density functions of a random processes

dFg{xi;tl)

1. First order density tunction: fx{x:ty) = s
axy

" ' i O2Fg(X1.X2: t1.£2)
Second order density function: fx(x; x. 1 ©) =

al ,rfh:

D Fx(X1.%2...... XN | T1.£2.,...IN)

th . o
3. N7 order density funcnon: (X xo... . XNi T, 12 IN)= oG 3
3 XNz 0N

can be obtained from the derivatives of the distribution functions.

Independent random processes: Consider a random process X(t). Let X(ti) = xi, i= 1,2,..N be
N Random variables defined at time constants t1,t2, ... t N with density functions fX(x1;t1),
fX(x2;t2), ...
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fX(XN ; tN). If the random process X(t) is statistically independent, then the Nth order joint
density function is equal to the product of individual joint functions of X(t) i.e.
X(x1, x2..... xN ; t1, 12,..... tN)= fX(x1;t1) fX(x2;t2). fX(XN ; tN). Similarly the joint distributio

will be the product of the individual distribution functions.

Statistical properties of Random Processes: The following are the statistical properties of random

processes.

Mean: The mean value of a random process X(1) is equal ro the expected value of the
random process 1.6, X(t) = E[X(D)] = J__ xfi(x;t)dx
Autocorrelation: Consider random process X(t) Let X; and X; be two random

vanables defined ar times 1y and 1 respectuvely with joint density function
fx(X1 x2: 11 t2). The comrelation of X and Xs, E[X; Xa] = E[X(t1) X(t2}] 15 called the

Rxx(t1.12) = E[X1 Xa] = E[X{t1) X(12)] o1

Raodtita) = [ [ xyxafi(x1,x2 ; t1,t2) dxydx;

Cross corvelation: Consider ravo random processes X(1) and Y(r) defined with

random variables X and Y at time mstants t; and t; respectively, The joint density
funcrion is f(x.v . 15.05). Then the correlation of X and Y. E[XY] = E[X(1y) Y(r)] 1s
called the cross comelation function of the random processes Xi(t1) and Y (1) whach 1=
defined as

Rxy(ty.02) = E[X Y] = E[X(t)) Y(t2)] or

Rxy(ty.ta) = J'j’__. _l'j: oy fep(xy: tLe2) dxdy
Stationary Processes: A random process is said to be stationary if all its statistical properties

such as mean, moments, variances etc.. do not change with time. The stationarity which
depends on the density functions has different levels or orders.
1. First order stationary process: A random process is said to be stationary to order one or first
order stationary if its first order density function does not change with time or shift in time value. If
X(t) is a first order stationary process then fX(x1;t1) = fX(x1;t1+At) for any time t1. Where At is shift in
time value. Therefore the condition for a process to be a first order stationary random process is that

its mean value must be constant at any time instant. i.e. E[X(t)] = constant.
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2. Second order stationary process: A random process is said to be stationary to order two or
second order stationary if its second order joint density function does not change with time or shift
in time value i.e. fX(x1, x2 ; t1, t2) = fX(x1, x2;t1+At, t2+At) for all t1,t2 and At. It is a function of time
difference (t2, t1) and not absolute time t. Note that a second order stationary process is also a first
order stationary process. The condition for a process to be a second order stationary is that its
autocorrelation should depend only on time differences and not on absolute time. i.e. If RXX(t1,t2) =
E[X(t1) X(t2)] is autocorrelation function and t =t2 —t1 then RXX(t1,t1+ t) = E[X(t1) X(t1+ t)] = RXX(T) .
RXX(t) should be independent of time t.

3. Wide sense stationary (WSS) process: If a random process X(t) is a second order stationary
process, then it is called a wide sense stationary (WSS) or a weak sense stationary process. However
the converse is not true. The condition for a wide sense stationary process are 1. E[X(t)] = constant. 2.
E[X(t) X(t+T)] = RXX(T) is independent of absolute time t. Joint wide sense stationary process: Consider
two random processes X(t) and Y(t). If they are jointly WSS, then the cross correlation function of X(t)
and Y(t) is a function of time difference t =t2 —tlonly and not absolute time. i.e. RXY(t1,t2) = E[X(t1)
Y(t2)] . If T =t2 —t1 then RXY(t,t+ t) = E[X(t) Y(t+ T)] = RXY(1). Therefore the conditions for a process to
be joint wide sense stationary are 1. E[X(t)] = Constant. 2. E[Y(t)] = Constant 3. E[X(t) Y(t+ T)] = RXY(T)
is independent of time t.

4, Strict sense stationary (SSS) processes: A random process X(t) is said to be strict Sense stationary
if its Nth order joint density function does not change with time or shift in time value. i.e. fX(x1, x2

xN ; t1, t2, XN ; t1+At, t2+At, . . . tN+At) for all t1, t2 ... tN and At. A process that
is stationary to all orders n=1,2,. .. N is called strict sense stationary process. Note that SSS process

is also a WSS process. But the reverse is not true.

Ergodic Theorem and Ergodic Process: The Ergodic theorem states that for any random process X(t), all time
averages of sample functions of x(t) are equal to the corresponding statistical or ensemble averages of X(t).
i.e. x = X or Rxx(T) = RXX(T) . Random processes that satisfy the Ergodic theorem are called Ergodic processes.
Joint Ergodic Process: Let X(t) and Y(t) be two random processes with sample functions x(t) and y(t)
respectively. The two random processes are said to be jointly Ergodic if they are individually Ergodic and their

time cross correlation functions are equal to their respective statistical cross correlation functions.

i.e. x =Xy =Y 2. Rxx(1) = RXX(T), Rxy(t) = RXY(T) and Ryy(1) = RYY(1).
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Mean Ergodic Random Process: A random process X(t) is said to be mean Ergodic if time
average of any sample function x(t) is equal to its statistical average, which is constant and
the probability of all other sample functions is equal to one. i.e. E[X(t)] =X = A[x(t)] = x with
probability one for all x(t).

Autocorrelation Ergodic Process: A stationary random process X(t) is said to be
Autocorrelation Ergodic if and only if the time autocorrelation function of any sample function
X(t) is equal to the statistical autocorrelation function of X(t). i.e. A[x(t) x(t+1)] = E[X(t) X(t+T1)]
or Rxx(T) = RXX(7).

Cross Correlation Ergodic Process: Two stationary random processes X(t) and Y(t) are said
to be cross correlation Ergodic if and only if its time cross correlation function of sample
functions x(t) and y(t) is equal to the statistical cross correlation function of X(t) and Y(t). i.e.
Alx(t) y(t+1)] = E[X(1) Y(t+T)] or Rxy(T) = RXY(T).

Properties of Autocorrelation function: Consider that a random process X(t) is at least WSS
and is a function of time difference T = t2-t1. Then the following are the properties of the

autocorrelation function of X(t).

1. Mean square value of X(t) is E[le.tu] = Ryx(0). It is equal to the power (average) of
the process. X(1).
Proof: We know that for X(1). Rxae(v) = E[X(t) X(t+ )] . If t=10, then Ryx(0) = E[X(1)
X(1)] = E[X7(t)] hence proved.
Autocorrelation function 13 maximum at the origin 1.e. |Ryy(T)| = Ryx(0).
Proof: Consider two random vanables X(t;) and X(12) of X(1t) defmed at nme mtervals
ty and ty respectively. Consider a positive quantity [X(t) iX(t;)]3 > ()
Taking Expectation on both sides. we get E[X(t;) +X(t)] 20
E[X*’Jt, )+ X.)"Tg:l + 2X(t;) X(t2)] 2 0
E[X°(t) E[X°(t) £ 2E[X() X(1)] 20
Rxx(0)+ Ra(0)+ 2 Ry(ty.tz) = 0 [Since E[X(t)] = Rxx(0)]
Given X{t) 1s WSS and t=ts-t;.
Therefore 2 Ryy((0+ 2 Ryx(t) 2 0
Rxx(D+ Rxx(t) = 0O or
|Ryy (T)] < Ryx(0) hence proved
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Rax(T) 1s an even function of 1 i.e. Ryoxl(-1) = Ryx(1).
Proof: We know that Ryx(t) = E[X(t) X(t+ 1)]

Let t=- 1 then

Rxx(-1) = E[X(1) X(t- 1)]

Letu=t-tort=utrt

Therefore Ryx(-7) = E[X(u+ 1) X(u)] = E[X(u) X(u+ 1)]

If a random process X(t) has a non zero mean value. E[X(t)] = 0 and Ergodic with no
periodic components, then limy;;_, Rye(T) = X°.

Proof : Consider a random variable X(t)with random variables X(t;) and X(ty). Given
the mean valve is E[X(t)] = X £ 0. We know that

Rxx(t) = E[X(X(t+1)] = E[X(ti) X(t;)]. Since the process has no periodic
components, as|t| — o, the random vanable becomes mdependent, 1.e.

Hmy 7y oo Ryy(T) = E[X (1)) X{12)] = E[X(1y)] E[ Xit2)]

Since X(1) is Ergodic E[X(11)] = E[ X()] = ¥

Therefore limy|, Ryx(T) = X% hence proved.

5. 1 X(t) 1s peniodic then 1ts autocorrelation function is also penodic.

Proof: Consider a Random process X(t) which 1s peniodic with pertod To
Then X(t) = X{t+ Tp) or

X(t+1)= X{t+1 + Tp). Now we have Ryx(7) = E[X(1)X(t+1)] then
Ryx(tt Tp) = E[X(0)X({t+1+ Ty)]

Given X(1) 15 WSS, Rxx( 1t To) = E[X(1)X(1+1)]

Ryx(t+ Ty) = Rxx(1)

Therefore Ryy(7) 1s periodic hence proved
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6. If X(1) 1s Ergodic has zero mean. and no periodic components then
lilll|r|..,x, Rxx(f) ={),
Proof: It is already proved that limgs Ryx (1) = ¥2. Where X is the mean value of
X(1) which 1s given as zero.
Theretore lim)j—. Ryx(1) = 0 hence proved.
The antocorrelation function of random process Rxxdt) cannot have any arbitrary
shape.
Proof: The autocorrelation function Ryor(t) 15 an even function of v and has maximum
value at the orign. Hence the autocorrelation function cannot have an arbitrary shape
hence proved.
If a random process X(t) with zero mean has the DC component A as Y(t) =A + X(t).
Then Ryv(1) = A™+ Rxx( 7).
Proof: Given a random process Y{t) =A - X(1).
We know that Ryy(7) = E[Y{#)Y(t+1)] =E[(A + X(1)) (A + X(1+ 1))]
_E[(A”+ AX(t) + AX(t++ o)+ X(t) X(t+1)]
- E[(A%] + AE[X(1] + E[AX(t+ 9+ E[X(t) X(++ )]
=A"+0+0+ Ryx(t).
Therefore Ryyit) = A%+ Rxx(t) hence proved

If a random process Z(t) is sum of two random processes X(t) and Y1)
1.e, Z(t) = X{(t) ~ Y(1). Then Rzz(t} = Rxx(t)+ Rxy{t)+ Ryx(7t)+ Ryy(t)
Proof: Given Z(t} = X(t) - Y (t).

We know that Rzz(t) — E[Z(t)Z(t+1)]

= E[(X(1)+Y (1) (X(t+1)Y(1+1))]

- E[(X{(1) X{(t+1)+ X(1) Y{1+1) +Y (1) X(t+1) +Y (1) Y(t+1))]

= E[(X(1) X(t+1)]+ E[X(1) Y(t+1)] ~E[Y (1) X(1+0)] +E[Y (1) Y{t+t))]
Therefore Rzz(1) = Ry 1)— Rany( 1)+ Ryl 1)+ Ryvyf 1) hence proved.
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Properties of Cross Correlation Function: Consider two random processes X(t) and Y(t) are
at least jointly WSS. And the cross correlation function is a function of the time difference T =
t2-t1. Then the following are the properties of cross correlation function.

1. RXY(t) = RYX(-T) is a Symmetrical property.

Proof: We know that RXY(1) = E[X(t) Y(t+ T)] also RYX(1) = E[Y(t) X(t+ T)] LetTt=-T

then RYX(-T) = E[Y(t) X(t- T)] Let u=t- T or t= u+ T. then RYX(-T) = E[Y(u+ T) X(u)] =

E[X(u) Y(u+ 1)] Therefore RYX(-T) = RXY(T) hence proved.

2. If RXX(t) and RYY(t) are the autocorrelation functions of X(t) and Y(t) respectively then the cross

correlation satisfies the inequality

|Ryy (T)] < /Rxx(0)Ryy(0).

X(t) Y(t+1)
VRxx(0) — JRyy(0)

P

X2(t) Y2((t+1) X(O)y(t+1) ] >0
JRxx(0)  Ryy(0)" = /Rxx(0)Ryy(0)"

X2(t) Y2((t+1) X(t)y(t+1)

\/'Rxx(o)] ¥ [\,/RYY(O)] - [\,'RXX(O)RYY(O)

We know that E[X(1)] = Rxx(0) and E[Y*(t)] = Ryx(0) and E[X(t) X(t+ 1)] = Rxy(7)

] 20

E[

Rxx(0) . Ryy(0) 2 Rxy(T) -
Rxx(0) Ryy(0) —  JRxx(0)Ryy(0)

Therefore

’)+ ZRXY—(T) =)
T 7 JRxx(0)Ryy(0)
Rxy(T) S

— JRxx(0)Ryy(0) —

\,'[Rxx(o)Rw(.O) . 2 [Rgy(0)| Or
3. If RXX(t) and RYY(t) are the autocorrelation functions of X(t) and Y(t) respectively then the cross

correlation satisfies the inequality:

IRy (O] = 3 [Rcx(0)+ Ryy(0)]
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Proof: We know that the geometric mean of any two positive humbers cannot exceed their

arithmetic mean that is if RXX(t) and RYY(T) are two positive quantities then at 1=0,

JRxx(0)Ryy(0) = % [Rxx(0)+ Ryy(0)]. We know that |Rgy(T)| = /Rgx(0)Ryy(0)

4.1f two random processes X(t) and Y(t) are statistically independent and are at least WSS, then RXY(1)

=XY . Proof: Let two random processes X(t) and Y(t) be jointly WSS, then we know that
RXY (1)

=E[X(t) Y(t+ 1)] Since X(t) and Y(t) are independent RXY (1) =E[X(})]E[ Y (t+ T)]

Proof: We know that Ryp(t) =E[X(0) Y(t+ 1)]. Taking the lunits on both sides
limypj~e Ryy () = limyp). E[X(1) Y(t + T}].

As || — oo, the random processes X(1) and Y(t) can be considered as independent
processes therefore

limj oo Ryy (1) = E[X(D]E] Y(t+ 1)] =XY

Given X = ¥Y=0

Therefore limy;j.e Rxy(T) = 0. Similarly lim);., Ryx(1) = 0. Hence proved.

Covariance functions for random processes: Auto Covariance function: Consider two random

processes X(t) and X(t+ T) at two time intervals t and t+ t. The auto covariance function can be expressed

Cxx(1. t=10) = E[{X(D-E[X{D)]) ((X(t+71) - E[X{t+D)])] ot
Cxxit, t=1) = Rxx(t, t=1) - E[(X(1) E[X(t=1)]

If X(1) 1s WSS. then Cxx(7) = Ry 1) - X2, At 1= 0, Cxx(0) = Rax{0) - X =E[.\l:]- X2=gX?
as
Therefore at T = 0, the auto covariance function becomes the Variance of the random

process. The autocorrelation coefficient of the random process, X(t) is defined as

Pxx(t t+1) = Oxx (D)

if T =0.
JCxx (L) Cxxe(t+T.t+T)

Cyx(tt)

(D) =1. Also |pyx (Lt + 1) =1

Pxx(0)=
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Cross Covariance Function: If two random processes X(t) and Y(t) have random variables

X(t) and Y(t+ 1), then the cross covariance function can be defined as

CXY(t, t+1) = E[(X()-E[X(1)]) ((Y(t+T) - E[Y(t+T)])] or CXY(t, t+T) = RXY(t, t+71) - E[(X(t) E[Y(t+T)]
If X(t) and Y(t) are jointly WSS, then CXY(1) = RXY(1) -X Y. If X(t) and Y(t) are Uncorrelated
then CXY(t, t+T) =0.

The cross correlation coefficient of random processes X(t) and Y(t) is defined as

Cxy(tt+1)
J Cax (L) Cyy(t+T.t41)

Pxy(t. t+1) = if T =0,

Cxy(0) _ Cxy(0)
v Cxx(0)Cyy(0) oxoy

Pxy(0) =

Gaussian Random Process: Consider a continuous random process X(t). Let N random
variables X1=X(t1),X2=X(t2), . . . ,XN =X(tN) be defined at time intervals t1, t2, . . . tN
respectively. If random variables are jointly Gaussian for any N=1,2,... And at any time
instants t1,t2,. . . tN. Then the random process X(t) is called Gaussian random process. The

Gaussian density function is given as

1
(2m)N/2|[Cxx]|1/2

exp(-[X — X1 [Cxx][X — X1)/2

XNt o tN)=

Poisson’s random process: The Poisson process X(t) is a discrete random process which
represents the number of times that some event has occurred as a function of time. If the
number of occurrences of an event in any finite time interval is described by a Poisson
distribution with the average rate of occurrence is A, then the probability of exactly
occurrences over a time interval (0,t) is

(lthE_lt
k! ‘

P[X(1)=K] = K=0.1.2,. . .

And the probability density function is

Ke—lt

) o (At
fX(XJZEk=D{JT

5 (x-k).
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UNIT-IV

STOCHASTIC PROCESSES: SPECTRAL
CHARACTERISTICS

Dept. of ECE




SYLLABUS

Power spectrum: Properties, relationship between power spectrum and auto-correlation function; The
cross power density spectrum, properties, relationship between cross power spectrum and cross
correlation function. Spectral characteristics of system response: Power density spectrum of response;
cross-power density spectrum of input and output of a linear system. Introduction to white Gaussian noise

process and its properties.

INTRODUCTION

In this unit we will study the characteristics of random processes regarding
correlation and covariance functions which are defined in time domain. This unit explores
the important concept of characterizing random processes in the frequency domain. These
characteristics are called spectral characteristics. All the concepts in this unit can be easily

learnt from the theory of Fourier transforms.

Consider a random process X (t). The amplitude of the random process, when it varies
randomly with time, does not satisfy Dirichlet’s conditions. Therefore it is not possible
to apply the Fourier transform directly on the random process for a frequency domain
analysis. Thus the autocorrelation function of a WSS random process is used to study

spectral characteristics such as power density spectrum or power spectral density
(psd).

Power Density Spectrum: The power spectrum of a WSS random process X (t) is
defined as the Fourier transform of the autocorrelation function RXX (T) of X (t). It can be

expressed as

¥ ]
SXK(mJ - f—x-RXX[r}e_jwrdr

We can obtain the autocorrelation function from the power spectral density by taking the

inverse Fourier transform i.e.

1 ,m
Rxx (1) = gf_x. Sxx (@) oot g4
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Therefore, the power density spectrum SXX(w) and the autocorrelation function RXX
(t) are Fourier

transform pairs.

The power spectral density can also be defined as

2
E[|X (| ]

Sxx(m) = limyp_, o=

Where XT(w) is a Fourier transform of X(t) in interval [-T,T]

Average power of the random process: The average power PXX of a WSS random process X(t) is

defined as the time average of its second order moment or autocorrelation function at t =0.

Mathematically

Pxx= A {E[X*(1)]}

Pxx= limp_ 0= [ E[X?()]dt

Or P}O{ =R5ﬂf [T}l r=20

We know that from the power density spectrum
1 o0
Rxx (1)= Ef—-x- SXX':E"'} eJWT g4
At t=0 P*,G; = R_T(‘,{ {D} =

L e g
Ej—m xxW g

Therefore average power of X(t) is

Pax= - .S
XX~ Ef—m xx'@ dew
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a0
Sxx(m) = f—::; Ryy(n) —jwr 4o at ©=0.

Properties of power density spectrum:

The properties of the power density spectrum SXX(w) for a WSS random process X(t) are given as

Proof: From the definition, the expected value of a non negative function

2. The power spectral density at zero frequency is equal to the area under the curve of the autocorrelation Rxx

Sxx(0) = [ Ryy®@ 4
(1) i.e.

Proof: From the definition we know that

Sxx(0) = [__Ryx®@ ar

3. The power density spectrum of a real process X(t) is an even function i.e.

SXX(-w)= SXX(w)
Proof: Consider a WSS real process X(t). then

a0 . a0
SKK(m:} - f—::: RXX{T:' e JWT gt also SXX(-G)} - f—-x- RXX':F:' elWT g1

Substitute T = -T then

-
Sxx(-@) = f_m Ryx(-1) g—jor g
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Since X (1) is real, from the properties of autocorrelation we know that, RXX (-t) = RXX (7)

. oD
Sxx(-m) = f_.x. Rxx”] eJWT g1

3. SXX(w) is always a real function

4. If SXX(w) is a psd of the WSS random process X(t), then

1 oo 2 -
EI—-x- Sxx@ g0 = A {E[X' (D]} = Rxx (0)
5. If X(t) is a WSS random process with psd SXX(w), then the psd of the derivative of X(t) is equal

SXX(®) =" Sxx(®)
to w? times the psd SXX(w).

Cross power density spectrum: Consider two real random processes X(t) and Y(t).
which are jointly WSS random processes, then the cross power density spectrum is
defined as the Fourier transform of the cross correlation function of X(t) and Y(t).and is

expressed as

s - - - :
Sxv(w) = _L,‘Rm-lr: =IOt 41 and Syx(w) = J_J: R)’.\'”'-_- - JUT g by inverse Fourier
transformation, we can obtain the cross correlation functions as

L 1 x
Rev (1) = <. '—7 ém-xs'. gJar 4., and Ryx (11 = = '_T ~Syriul QJOT g

Therefore the cross psd and cross correlation functions forms a Fourier transform pair

If XT(w) and YT(w) are Fourier transforms of X(t) and Y(t) respectively in interval [-

T,T], Then the cross power density spectrum is defined as
1 1
E[ X (&J}YT[W} ] E[ YTI:EU}XTl: w) ]

T p- and Syx(®) = limp_,

Sxyv(m) =limr_, gy

Average cross power: The average cross power PXY of the WSS random processes X(t) and Y(t) is
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defined as the cross correlation function at T =0. That is

3 1
Py = limyg.. 3=

T
s Ryv(t.)dt  or

L

Pyy =Ry (7)|T = 0=Rxy(0) Also Pxy = Sxyt@) g, and Pyx= =

ps IS

Properties of cross power density spectrum: The properties of the cross power for real random

processes X(t) and Y(t) are given by

(1) SXY(-w)= SXY(w) and SYX(-w)= SYX(w)

Proof: Consider the cross conrelation function Ryy(7). The cross power density spectrum is

L ® o
5?{\"."')' a -'-T Syylt) g=Iwr ¢

Let 1=-1Then

2 » . : ;
5}0'((&“ = ’_ o F"_\fyl—rl oJeT g1 Since Rj(yl_-t'l = nyl‘t]

Sk’\'l_(v). — J_ % R',._,',:g:, t,‘,"ﬁ:f ar

Theretore Sxv(-0 )= Sxy(m) Smularly Syx(-0)= Syx(®) hence proved.
(2) The real part of SXY(w) and real part SYX(w) are even functions

of wi.e. Re [SXY(w)] and Re [SYX(w)] are even functions.

+ - : Les
Proof. We know that Sxy(w) = J__ Ry .- jwr 4, and also we know that

-

=iz i v
e I =cosmt-jsmnwmt. Re [Sy(m)] = _f_ F_ R_.‘.w-” e

Since cos @t is an even function i.e. cos T = cos (~mf)

-

r =]
—w XYY cos( —ot) dr

Re [Sxv{w]] = .f:.f"‘.wf”

cosnt dr

Theretore Sxviw)= Sxy(-w) Smmilarly Svxiwm)= Syxi-w) hence proved.

(3) Theimaginary part of SXY(w) and imaginary part SYX(w) are odd functions of

wi.e. Im [SXY(w)] and Im [SYX(w)] are odd functions.
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Proof: We know that Sxy(w) = [ fx R yy () g—juwr 4, and also we know that

e ¥T=¢cosmt-jsinat,

Im [Sxv(®)] = |__ Ry 0 —sinotyar = - J_, Ry Oginot ar = - I [Sxy{@)]

Therefors Im [Syv(®)] = - Im [Sxv(®)] Similarly Im [Syxi@)] = - Im [Syx(®@)] hence proved
(4) SXY(w)=0and SYX(w)=0if X(t) and Y(t) are Orthogonal.

Proof From the properties of cross correlation function. We know that the random processes
X(t) and Y{1) are said to be orthogonal if their cross correlation function 15 zero,

1.8, Ryy(t)=Ryx(t) =0,
. g L pm
We know that Sxy(®@) = |__ Ryyin) -sor 4,

Therefore Sxy(@)=0. Simlarly Syx(®)=0 hence proved.

(5) If X(t) and Y(t) are uncorrelated and have mean values and, then

Sxy(@)=2nX Y §(w).

AL o
Proof: We know that Sxy{e) = ~|'-__:‘D R oy (7) g—jwir 4o
= Sxy(wm) = [ E[X()V(t + r)]e 19T dr

Since X(t) and Yt} are uncorrelated, we know that

E[X()V(t + t)= E[X(IE[V(t + )]

Therefore Sxy(wm) = J-j:r_ E[X(OIE[¥ (e + v)]e T dr

Saryl) = II_: X¥Ve fot dr

Sl =X ¥ I"_Tr g T T

Therefore S.yi{w)=2nX ¥ &(w). hence proved.
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LINEAR SYSTEMS RESPONSE TO RANDOM INPUTS

Consider a continuous LTI system with impulse response h (t). Assume that the system is
always causal and stable. When a continuous time Random process X (t) is applied on this
system, the output response is also a continuous time random process Y (t). If the random
processes X and Y are discrete time signals, then the linear system is called a discrete time
system. In this unit we concentrate on the statistical and spectral characteristics of the output

random process Y (t).

System Response: Let a random process X (t) be applied to a continuous linear time invariant
system whose impulse response is h(t) as shown in below figure. Then the output response
Y (t) is also a random process. It can be expressed by the convolution integral, Y (t) = h (1)
*X (1)

X(t) Y (t)

—

Y (=" h(@X(t—1)dr.

Mean Value of Output Response: Consider that the random process X (t) is wide sense stationary

process.

Mean value of output response=E[Y (1)],
Then E[Y ()] = E [h (t) * X (1)]
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=E [[™_ h{0)X(c — r)dr]

- _h(DELX(t — 7)ldr

But EfX(e r)] = X =constant, since X (t) iz WSS,

Then E[V (D) = ¥ = X [T k(1) dr. Also if H (w) is the Fourier transform of h (1), then

H {w) = [—.. (e *T dt. At w=0,H [(0) = j_-_“ ft{t) dt is called the zero frequency response
Of the system, Substituting this we ger ELY (1)) - v - XA (0) Is constant. Thus the meaan
value of the output response Y (1) of a WSS random process is equal to the product of the

mean value of the input process and the zero frequency response of the system.

M ean squar e value of output responseis

Autocorrelation Function of Output Response: The autocorrelation of Y (t) is

Ryy(ty,72) =E[Y (ty) Y (t2)

=E[(h (t2) * X (t1)) (h (t2) * X (t2))]

=E [ I_mm h((l)X(tl T £ )d T I_mw h(fz)X(tz — Tz)d Tz] power.

=E [f_o:,, I_wa, X(t, —1)X(t; — 1)h(v)h(zr,)d 1,d7,]

= f_c'; ff‘; E[X(t, — 1,)X(t; — 15)1h(rh(T,)d 1, dT,
E[Y2(t)] = E [{h it) * X [t))*]

E [(h [ty = 2 4uhy (b (t) * X (thd]
ELJT, M )X (e —rddry [0 h{r)X 0t — rp)d 1]
ELC T Xt — 7 )Xt — 10h(t, ) h(1)d T, dT;)

ELvie) - [ [ ELXCG— o, )X (t — w20 h(t dh(ta)d T d Ty
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We know that E [X(t; — 7)X(t, — 75)] = Ryx(t, — &, + 7, — T,).
If input X (t) is @ WSS random process, Let the time difference t = t3-t; and t=t; Then

EIX(t =1)X(+T—71,)] = Rexlt + 1, =13). Then

Ryy(t,t +T)=Ryp(t,T) = [ [7 Ryx(t + 7, —7,) h(1))h(z,)d 1, d1,

If = Ryx (1) is the autocorrelation function of X (t), then Ryy(7) = Rxx(t) * h(t) h(-T)

It is observed that the output autocorrelation function is a function of only T. Hence the output
random process Y(t) is also WSS random process.

If the input X (t) is WSS random process, then the cross correlation function of input X (t) and output Y(t) is

Reyl(t,t + T)=E[X(2) Y [t+1)]

Rav (7) = E [X (U7 R(T2) X (t+ v-7y) dis]

Ry (7) = E [X () X (t+ - 7,)] h(7,)dr,]

Ryy (1) :.[‘:: Ryx(t — 1)) R{ry)dr; which is the convolution of Ryy(t) and h ().
Therefore Ry (1) = Rex(t) * h () similarly we can show that Ry (1) = Ryx(t) * h (-x)

This shows that X (t) and Y(1) are jointly WSS And we can alsa relate the autocorrelation functions

and the cross correlation functions as
Ry AT = Ry IT) * W (1)

Ry T} = Ryx(t) * h (7]
Spectral Characteristics of a System Response: Consider that the random process X (t) is a

WSS random process with the autocorrelation function Rxx(t) applied through an LTI
system. It is noted that the output response Y (t) is also a WSS and the processes X (t) and
Y (t) are jointly WSS. We can obtain power spectral characteristics of the output process Y(t)

by taking the Fourier transform of the correlation functions.
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Power Density Spectrum of Response: Consider that a random process X (t) is applied on
an LTI system having a transfer function H(w). The output response is Y (t). If the power
spectrum of the input process is SXX (w), then the power spectrum of the output response is
given by SYY (w) =

|H (@) Sy (w).
Proof: Let Ry-(1) be the autocorrelation of the output response Y {t). Then the power spectrum of
the response is the Fourier transform of Ry (T).
Therefore Sy (W) = F [Sw{w)]
= [ Ry(D)e /=" dr
we know that Ryy (7) = _f:__ 7 Rex(t + 13 — 13) kit Ih(rz)d 1y dr;

Then Sy (W) = | = = |7 Rys(x + 1y — 15) AT )h(r,)d t,de, e /97 dr
= [7o h(xy) [ h(xp) [T, Rgx(r + 14 — 1) e 7% dr dr, dry

[2x]

= ffo_u h(r;)ei*1 f_‘i_ h(ts)e/“r2 ff Ryx(T+ T3 —Ta) e /9T el®T1ei¥%adr d1, di

Let Tt +101-12=t1, dr = dt

Therefore Sy (w) = f_wu hiryle’® =dr, f_"”n h(rs)el* 2dr, ‘._“_Q Ryx(t) e 1*"dt

We know that H (w) = [ h(v)e 7¢* dt.

Therefore Sy (W) = H*{w) H{w) S {w) = Hi-wIH(w) Sex (W)

Therefore Sy (w) = |H(@)|? Sxx (). Hence proved,

Similarly, we can prove that the cross power spectral density function is

Swr () = Syx (W) Hlw) and Syx(w) = Sxex (w) H(-w)
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Spectrum Bandwidth: The spectral density is mostly concentrated at a certain
frequency value. It decreases at other frequencies. The bandwidth of the
spectrum is the range of frequencies having significant values. It is defined
as “the measure of spread of spectral density” and is also called rms

bandwidth or normalized bandwidth. It is given by

oz
..r—m m 'qxxiw]dﬁd

Wz

rms

—0 - X_Xl:id]dn.l
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UNIT -1 PPT

PTSP COURSE FILE

PPT AND NPTEL VIDEO LINKS

PTSP UNIT-1 PPT.pptx

UNIT — | NPTEL
VIDEO

https://www.youtube.com/watch?v=7LyISi6JyWM&authuser=1
https://www.youtube.com/watch?v=0AEZFzGTPAQ&authuser=1

UNIT — Il PPT

UNIT - 1l PPT.pdf

UNIT — 11 NPTEL
VIDEO

https://www.youtube.com/watch?v=vNEkJual 1ec& authuser=1
https://www.youtube.com/watch?v=srnBnbJaB2A & authuser=1

UNIT — Il PPT

UNIT - Il RANDOM PROCESSES TEMPORAL
CHARACTERISTICS.pptx

UNIT — 11l NPTEL
VIDEO

https.//www.youtube.com/watch?v=zwBIkgK M TgM & authuser=1
https://www.youtube.com/watch?v=dSej7AHlim4&authuser=1

UNIT - IV PPT

UNIT - IV PPT.ppt

UNIT — 1V NPTEL
VIDEO

https://www.youtube.com/watch?v=iNNen3p3SVw& authuser=1
https://www.youtube.com/watch?v=jgJXZA7Ti0OQ&authuser=1

UNIT -V PPT

UNIT-V PPT.pptx

UNIT -V NPTEL
VIDEO

https://www.youtube.com/watch?v=uhKaL TnOOPw& authuser=1
https://www.youtube.com/watch?v=uQj 393V pdsc& authuser=1

PTSP MATERIAL

PTSP MATERIAL .pdf

I B. TECH ECE Il SEM



file:///C:/Users/ECE/Downloads/PTSP%20UNIT-I%20PPT.pptx
https://www.youtube.com/watch?v=7LyISi6JyWM&authuser=1
file:///C:/Users/ECE/Downloads/UNIT%20-%20II%20PPT.pdf
https://www.youtube.com/watch?v=vNEkJual1ec&authuser=1
https://www.youtube.com/watch?v=srnBnbJaB2A&authuser=1
file:///C:/Users/ECE/Downloads/UNIT%20-%20III%20RANDOM%20PROCESSES%20TEMPORAL%20CHARACTERISTICS.pptx
file:///C:/Users/ECE/Downloads/UNIT%20-%20III%20RANDOM%20PROCESSES%20TEMPORAL%20CHARACTERISTICS.pptx
https://www.youtube.com/watch?v=zwBIkqKMTqM&authuser=1
file:///C:/Users/ECE/Downloads/UNIT%20-%20IV%20PPT.ppt
https://www.youtube.com/watch?v=iNNen3p3SVw&authuser=1
file:///C:/Users/ECE/Downloads/UNIT-V%20PPT.pptx
https://www.youtube.com/watch?v=uhKaLTnOOPw&authuser=1
https://www.youtube.com/watch?v=uQj3g3Vpdsc&authuser=1
file:///C:/Users/ECE/Downloads/PTSP%20MATERIAL.pdf

PTSP COURSE FILE

COURSE COMPLETION CERTIFICATE

I, VALAPARLA DAVID the faculty in the department of ECE have taught
PROBABILITY THEORY AND STOCHASTIC PROCESSES (EC401PC) to students of
[1. B. Tech— Il Sem and ECE (A & B) branch during academic year 2023-2024. | certified that
| have completed FIVE units on 12.06.2024.

g.-f;....-.;' _.--l‘—'-1rl+-‘---g

Sigﬁatufe of Faculty Signature of HOD

I B. TECH ECE Il SEM
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