Department of INFORMATION TECHNOLOGY

CourseFile

SOFTWARE ENGINEERING
(Course Code: CS6110E)

[11 B.Tech Il Semester

2023-24

K.Bikshapathi

Asst.Professor

& Anurag

Ao
(A

n Autonomous Institution)

Ananthagiri, Kodad, Telangana 508 206, India.

Course File

Department of Information Technology

Softwar e Engineering

. Anurag
ATS\A

(An Autonomous Inst itution

Check List
S.No Name of the Format Page No.
1 Syllabus 1
2 Timetable 3
3 Program Educational Objectives 4
4 Program Objectives 4
5 Course Objectives 5
6 Course Outcomes 5
7 Guidelinesto study the course 6
8 Course Schedule 7
9 Course Plan 10
10 | Unit Plan 14
11 | Lesson Plan 19
12 | Assignment Sheets 41
13 | Tutoria Sheets 46
14 | Evaluation Strategy 51
15 | Assessment in relation to COb'sand CO's 53
16 | Mappings of CO'sand PO's 53
17 | Rubric for course 55
18 | Mid-1 and Mid-Il question papers 56
19 | Mid-I mark 60
20 | Mid-1I mark 61
21 | Sample answer scripts and Assignments 62
22 | Course materias like Notes, PPT's, etc. 63
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
ATS\A

(An Autonomous Inst itution

Course File

Department of Information Technology
Int. Marks: 30 Ext. Marks: 70 Total Marks: 100

UNIT - I:

Introduction to Software Engineering: The evolving role of software, Changing

Nature of Software, Software myths. A Generic view of process. Software engineering- A layered
technology, aprocess framework, The Capability Maturity Model Integration (CMMI), personal
and team process models

UNIT - 11I:

Process models: The waterfall model, Incremental process models, Evolutionary

process model, Agile process.Software Requirements. Functional and non- functional requirements, the
software requirements document. Requirements engineering process. Feasibility studies, Requirements
eicitation and analysis, Requirements validation,

Requirements management

UNIT -1

Design Engineering: Design process and Design quality, Design concepts, the design model. Creating an
architectural design: Software architecture, Data design, Architectural styles and patterns, Architectural
Design. Object-Oriented design: Objects and classes, An Object-Oriented design process, Design evolution
.Performing User interface design: Golden rules, User interface analysis and design, interface analysis,
interface design steps, Design evaluation.

UNIT - IV:

Testing Strategies: A strategic approach to software testing, test strategies for conventional software,
Black-Box and White-Box testing, Validation testing, System testing, the art of Debugging. Product
metrics: Software Quality, Metrics for Analysis Model, Metrics for Design Model, Metrics for source
code, Metrics for testing, Metrics for maintenance. Metrics for Process and Products: Software

M easurement, Metrics for software quality

UNIT -V:

Risk management: Reactive vs. Proactive Risk strategies, software risks, Risk identification, Risk
projection, Risk refinement, RMMM, RMMM Plan. Quality Management: Quality concepts, Software
quality assurance, Software Reviews, Formal technical reviews, Statistical Software quality Assurance,
The Capability Maturity Model Integration (CMMI), Software reliability, The ISO 9000 quality standards.

TEXT BOOKS:
1. Software Engineering A practitioner’s Approach, Roger S Pressman, 6thedition.McGraw Hill

International Edition.
2. Software Engineering, lan Sommerville, 7th edition, Pearson education

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File A@‘A
Department of Information Technology
Timetable
11 B.Tech.| Sem
(ECE A &B,
MECH,CIVIL EEE)
11.20- 12.00- 12.55- 1.50-2.45 | 2.45-
Day/Hour 9.40-10.30 | 10.30-11.20 12,00 12 55 150 350
M onday SE SE
Tuesday SE SE
Wednesday SE
Thursday SE SE
Friday SE SE
Saturday
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File

Department of Information Technology

Vision of the Institute

To be a premier Ingtitute in the country and region for the study of Engineering, Technology and
Management by maintaining high academic standards which promotes the analytical thinking and
independent judgment among the prime stakeholders, enabling them to function responsibly in the
globalized society.

Mission of the Institute

To be aworld-class Institute, achieving excellence in teaching, research and consultancy in cutting-edge
Technologies and be in the service of society in promoting continued education in Engineering,
Technology and Management.

Quality Policy

To ensure high standards in imparting professional education by providing world-class infrastructure, top-
quality-faculty and decent work culture to sculpt the students into Socially Responsible Professionals
through creative team-work, innovation and research

Vision of the Department
To impart technical knowledge and skills required to succeed in life, career and help society to achieve self
sufficiency.

Mission of the Department

e To become an internationally leading department for higher learning.

e To build upon the culture and values of universal science and contemporary education.

e To be acenter of research and education generating knowledge and technologies which lay groundwork
in shaping the future in the fields of electrical and electronics engineering.

e To develop partnership with industrial, R&D and government agencies and actively participate in
conferences, technical and community activities.

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File

Department of Information Technology
Graduateswill beableto

PROGRAM EDUCATIONAL OBJECTIVES (B.TECH.-IT)

PEO1: graduates will be able to take up the professional responsibilities and effectively communicate

with diversified teams.

PEO2: graduates will have the commitment towards the sustainable development for the advancement
of the society by adhering ethics and values.

PEO3: graduates will practice lifelong learning in producing innovative solutions for complex
problems.

program outcomes (B.TECH. —IT)

engineering graduates will be able to:

PO 1: engineering knowledge: apply the knowledge of mathematics, science, engineering

fundamental's, and an engineering specialization to the solution of complex engineering problems.
PO2: problem analysis: identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO3: design/development of solutions: design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4: conduct investigations of complex problems: use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO5: modern tool usage: create, select, and apply appropriate techniques, resources, and modern

engineering and it tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

POG6the engineer and society: apply reasoning informed by the contextual knowledge to assess

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File

Department of Information Technology
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7: environment and sustainability: understand the impact of the professional engineering solutions
in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO8: ethics: apply ethical principles and commit to professional ethics and responsibilities and norms
of the engineering practice.

PO 9individual and team work: function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

PO10: communication: communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive

clear instructions.

PO11: project management and finance: demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a member and

leader in ateam, to manage projects and in multidisciplinary environments.

PO12 : life-long learning: recognize the need for, and have the preparation and ability to engagein

independent and life-long learning in the broadest context of technologica change.

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File
Department of Information Technology

COURSE OBJECTIVES

On completion of this Subject/Course the student shall be able to:

S.No Objectives
1 Knowledge of basic software engineering methods and practices, and their

appropriate application and a general understanding of software process models.

2 Understanding of software requirements and the SRS documents.

3 Understanding of different software architectural styles and design models.

4 Understanding of software testing approaches, techniques and metrics.

5 Understanding on quality control and risk management.

COURSE OUTCOMES

The expected outcomes of the Course/Subject are:

SNo Outcomes
1 | Understand the software engineering principles, practices and process models.

2 | Elicit, analyze and specify software requirements from the project stakeholders.

3 | Analyse and trandate the specifications into software designs and model the designs.

4 | Apply different test strategies to perform testing and metrics to assess the software.

5 | ldentify and manage software risks and maintain the quality of the software.

Signature of faculty

Note: Please refer to Bloom’s Taxonomy, to know the illustrative verbs that can be used to state the outcomes.

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

. Anurag
ATS\A

(An Autonomous Inst itution

Department of Information Technology

GUIDELINESTO STUDY THE COURSE / SUBJECT

Course Design and Délivery System (CDD):

The Course syllabus is written into number of learning objectives and outcomes.

Every student will be given an assessment plan, criteria for assessment, scheme of evaluation and
grading method.

The Learning Process will be carried out through assessments of Knowledge, Skills and Attitude by
various methods and the students will be given guidance to refer to the text books, reference books,
journals, etc.

Thefaculty beableto -

Understand the principles of Learning

Understand the psychology of students

Develop instructional objectivesfor agiven topic

Prepare course, unit and lesson plans

Understand different methods of teaching and learning

Use appropriate teaching and learning aids

Plan and deliver lectures effectively

Provide feedback to students using various methods of Assessments and tools of Evaluation
Act as aguide, advisor, counselor, facilitator, motivator and not just as a teacher alone

Signature of HOD Signature of faculty

Date:

Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

. Anurag
AT\

(An Autonomous Inst itution

Department of Information Technology

COURSE SCHEDULE

The Schedule for the whole Course / Subject is:

LLEGE
ion)

S. No.

Description

Duration (Date)

From To

Total
No.

Periods

UNIT -

Introduction to Software Engineering: The Evolving Role
of Software, Changing Nature of Software, Software Myths.
A Generic View of Process. Software Engineering- A
Layered Technology, A Process Framework, The Capability
Maturity Model Integration (CMMI).:

05-02-2024 | 20-02-2024

13

UNIT —II

Process Models

The Waterfall Model, Spiral Model and Agile Methodology.
Software Requirements: Functiona and Non-Functional
Requirements, User Requirements, System Requirements,
Interface Specification, The Software Requirements
Document. Requirements Engineering Process: Feasibility
Studies, Requirements Elicitation and Analysis, Requirements
Validation, Requirements Management.

21-02-2024 | 04-03-2024

10

UNIT — 111

Design Engineering: Design Process and Design Quality,
Design Concepts, The Design Model. Creating an
Architectural Design: Software Architecture, Data Design,
Architectural Styles and Patterns, Architectural Design.
Object-Oriented Design: Objects and classes, An Object-Oriented
design process, Design evolution. Performing User interface
design: Golden rules, User interface analysis and design,
interfaceanalysis, interface design steps, Design evaluation.

05-03-2024 | 16-04-2024

20

UNIT -1V

Testing Strategies. A Strategic Approach to Software
Testing, Test Strategies for Conventional Software, Black-
Box and White-Box Testing, Validation Testing, System
Testing, The Art of Debugging. Metrics for Process and
Products. Software Measurement, Metrics for Software

Quality.

18-04-2024 | 30-04-2024

10

AY: 2023-24 Il B.Tech Il Sem

Software Engineering

| A, Anurag
Course File
ATS\A

(An Autonomous Inst itution

Department of Information Technology

UNIT -V

Risk Management: Reactive Vs Proactive Risk Strategies,
Software Risks, Risk Identification, Risk Projection, Risk
5. Refinement, RMMM. Quality Management: Quality
Concepts, Software Quality Assurance, Software Reviews,
Forma Technical Reviews, Statistical Software Quality
Assurance, Software Reliability, The 1SO 9000 Quality
Standards.

02-05-2024 | 12-06-2024 16

Total No. of Instructional periods available for the course 73 Hours

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File o
Department of Information Technology
SCHEDULE OF INSTRUCTIONS - COURSE PLAN
Objectives
Unit | Lesson No. Of Topics/ Sub- &
No. No. Date Periods Topics Outcomes Textbook
Nos.
Software Engineering, A
practitioner’s Approach-
1 05-02-2024 1 Syllabus Overview | 1& 1 Roger S. Pressman, 6™
edition, McGraw Hill
International Edition.
UNIT -1 Software Engineering, A
; practitioner’s Approach-
2 06-02-2024 1 g‘;][fduc“on ©1 181 | RogerS. Pressman, 6"
lware. edition, McGraw Hill
Engineering International Edition.
Software Engineering, A
; practitioner’s Approach-
3 07-02-2024 1 RTIhe E‘gf‘{' ng 1&1 | RogerS.Pressman, 6"
oleo ware edition, McGraw Hill
International Edition.
Software Engineering, A
. practitioner’s Approach-
4 08-02-2024 1 Cha}[‘%;% Neture | 1 ¢ 1 | Roger S. Pressman, 6
of sottware edition, McGraw Hill
International Edition.
Software Engineering, A
1 practitioner’s Approach-
5 09-02-2024 1 Software Myths 1&1 Roger S. Pressman, 61
edition, McGraw Hill
International Edition.
Software Engineering, A
C N/ practitioner’s Approach-
6 12-02-2024 1 | A anp‘?r ICVIeW | 161 | RogerS. Pressman, 6"
O Frocess edition, McGraw Hill
International Edition.
Software Software Engineering, A
- oo practitioner’s Approach-
7 13-02-2024 1 Eng'Lnee”gg Al 181 | RogerS Pressman, 6"
ayer edition, McGraw Hill
Technology International Edition.
Software Engineering, A
A Process practitioner’s Approach-
8 14-02-2024 1 Framework,PSP 1&1 Roger S. Pressman, 6™
TSP edition, McGraw Hill
International Edition.
The Capability Software Engineering, A
o . practitioner’s Approach-
9 15-02-2024 1 M?’;}l:flti/{ﬁl;?d 1&1 Roger S. Pr an, 6
& edition, McGraw Hill
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File AAU
Department of Information Technology
,(CMMI),Process Internationa Edition.
patterns
UNIT - 11 Software Engineering, A
practitioner’s Approach-
10 16-02-2024 1 1&1 Roger S. Pressman, 61
The Waterfall edition, McGraw Hill
Model International Edition.
Software Engineering, A
practitioner’s Approach-
11 17-02-2024 1 Spiral Model 1&1 Roger S. Pressman, 61
edition, McGraw Hill
International Edition.
Software Engineering, A
practitioner’s Approach-
12 19-02-2024 1 Agile 1&1 Roger S. Pressman, 61
M ethodol ogy edition, McGraw Hill
International Edition.
Software Engineering, A
practitioner’s Approach-
13 20-02-2024 1 Agile 1&1 Roger S. Pressman, 61
M ethodol ogy edition, McGraw Hill
International Edition.
Software Engineering-
1 21-02-2024 1 Software 2&2 | Sommerville, 7th edition,
Requirements Pearson Education.
Functional and Software Engineering-
2 22-02-2024 1 Non-Functional 2& 2 Sommerville, 7th edition,
Requirements Pearson Education.
User Software Engineering-
3 23-02-2024 1 Requ t 2& 2 Sommerville, 7th edition,
equirements Pearson Education.
Software Engineering-
4 26-02-2024 1 System 2&2 | Sommenille, 7th edition,
Requirements Pearson Education.
Software Engineering-
5 27-02-2024 1 '”t.ir.facfa 2&2 | Sommenille, 7th edition,
2 Specification Pearson Education.
The Software Software Engineering-
6 28-02-2024 1 Requirements 2& 2 Sommerville, 7th edition,
Document Pearson Education.
Y Software Engineering-
7 20-02-2024 1 Feaaibility 2&2 | Sommenille, 7th edition,
Studies Pearson Education.
Requirements Software Engineering-
8 01-03-2024 1 Elicitation and 2& 2 Sommerville, 7th edition,
Analysis Pearson Education.
. Software Engineering-
9 02-03-2024 1 Rf/q;’: (rj‘:t?gﬂts 2&2 | Sommenille, 7th edition,
Pearson Education.
. Software Engineering-
10 04-03-2024 1 Requirements 2& 2 Sommerville, 7th edition,
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File AAU
Department of Information Technology
Management Pearson Education.
Software Engineering, A
UNIT — 111 practitioner’s Approach-
1 05-03-2024 1 Design 3&3 Roger S. Pressman, 61
Engineering edition, McGraw Hill

Internationa Edition.

Software Engineering, A

Design Process practitioner’s Approach-
2 06-03-2024 1 and Design 3&3 Roger S. Pressman, 6
Quality edition, McGraw Hill

International Edition.

Software Engineering, A
practitioner’s Approach-
3 07-03-2024 1 Design Concepts 3&3 Roger S. Pressman, 6™
edition, McGraw Hill
International Edition.

Software Engineering, A
practitioner’s Approach-

4 11-03-2024 1 The D?‘;I gn 3&3 | RogerS. Pressman, 6"
Mo edition, McGraw Hill
International Edition.
Software Engineering, A
Creating an practitioner’s Approach-
5 12-03-2024 1 Architectural 3&3 Roger S. Pressman, 61
Design edition, McGraw Hill

Internationa Edition.

Software Engineering, A
practitioner’s Approach-
6 13-03-2024 1 Asor:.tt""atre 3&3 | RogerS. Pressman, 6
rehitecture edition, McGraw Hill
International Edition.

Software Engineering, A
practitioner’s Approach-
7 15-03-2024 1 Data Design 3&3 Roger S. Pressman, 6
edition, McGraw Hill
International Edition.

Software Engineering, A

Architectural practitioner’s Approach-
8 16-03-2024 1 Styles and 3&3 Roger S. Pressman, 6™
Patterns edition, McGraw Hill

International Edition.

Software Engineering, A
practitioner’s Approach-

9 18-03-2024 1 Architecturdl 3&3 | RogerS. Pressman, 6
Design edition, McGraw Hill
International Edition.
Software Engineering, A
Object-Oriented practitioner’s Approach-
10 19-03-2024 1 Design: Objects 3&3 Roger S. Pressman, 61
and classes edition, McGraw Hill

International Edition

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

11

21-03-2024

An Object-
Oriented design
process.

Department of Information Technology

3&3

. Anurag
‘A

utonomous Institution

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

12

22-03-2024

Design evolution.

3&3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition

13

23-03-2024

Performing User
interface design:
Golden rules.

3& 3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition

14

08-03-2024

Golden rules

3&3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

15

04-04-2024

Golden rules

3& 3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition

16

08-04-2024

User interface
analysis and
design

3& 3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition

17

10-04-2024

Interface analysis

3& 3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition

18

15-04-2024

interface design
steps

3&3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 6™
edition, McGraw Hill
International Edition

19

16-04-2024

Design evaluation

3&3

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 6™
edition, McGraw Hill
International Edition

AY: 2023-24

Il B.Tech Il Sem

Software Engineering

. Anurag

Course File AAU
Department of Information Technology
Software Engineering, A
practitioner’s Approach-
20 18-04-2024 Design evaluation 3&3 Roger S. Pressman, 6
edition, McGraw Hill
International Edition
Software Engineering, A
UNIT -1V practitioner’s Approach-
1 19-04-2024 Testing 48 4 Roger S. Pressman, 61
Strategies edition, McGraw Hill
International Edition.
Software Engineering, A
A Strategic practitioner’s Approach-
2 20-04-2024 Approach to 48 4 Roger S. Pressman, 6
Software Testing edition, McGraw Hill
International Edition.
Software Engineering, A
Test Strategies practitioner’s Approach-
3 22-04-2024 for Conventiona 48 4 Roger S. Pressman, 61
Software edition, McGraw Hill
International Edition.
Software Engineering, A
practitioner’s Approach-
4 23-04-2024 Black-Box 4& 4 | RogerS. Pressman, 6
Testing edition, McGraw Hill
International Edition.
Software Engineering, A
. practitioner’s Approach-
5 24-04-2024 White-Box 4& 4 | RogerS. Pressman, 6"
4 Testing edition, McGraw Hill
International Edition.
Software Engineering, A
C practitioner’s Approach-
6 25-04-2024 Validation 4& 4 | RogerS. Pressman, 6"
Testing edition, McGraw Hill
International Edition.
Software Engineering, A
practitioner’s Approach-
7 26-04-2024 System Testing 48& 4 Roger S. Pressman, 6
edition, McGraw Hill
International Edition.
Software Engineering, A
practitioner’s Approach-
8 07-04-2024 The Art of 4& 4 | RogerS. Pressman, 6
Debugging edition, McGraw Hill
International Edition.
Software Engineering, A
practitioner’s Approach-
9 29-04-2024 Software 4& 4 | Roger S. Pressman, 6"
Measurement edition, McGraw Hill
International Edition.
Metrics for Software Engineering, A
10 30-04-2024 Software Quality 4& 4 practitioner’s Approach-
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

Department of Information Technology

. Anurag
‘A

utonomous Institution

Roger S. Pressman, 61
edition, McGraw Hill
Internationa Edition.

02-05-2024

UNIT -V
Risk
M anagement

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

03-05-2024

Reactive Vs
Proactive Risk
Strategies

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

04-05-2024

Software Risks

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

06-05-2024

Risk
Identification

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

07-05-2024

Risk Projection

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

08-05-2024

Risk Refinement

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

09-05-2024

RMMM

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

10-05-2024

Quality
M anagement:
Quality Concepts

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 6™
edition, McGraw Hill
International Edition.

03-06-2024

Quality Concepts

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 61
edition, McGraw Hill
International Edition.

10

04-06-2024

Software Quality
Assurance

5&5

Software Engineering, A
practitioner’s Approach-
Roger S. Pressman, 6"
edition, McGraw Hill

AY: 2023-24

Il B.Tech Il Sem

Software Engineering

Course File

Department of Information Technology

. Anurag
‘A

utonomous Institution

International Edition.
Software Engineering, A
practitioner’s Approach-
1 | 0506-2024 Software 5&5 | RogerS.Pressman, 6"
Reviews edition, McGraw Hill
International Edition.
Software Engineering, A
Formadl practitioner’s Approach-
12 06-06-2024 Technical 5&5 Roger S. Pressman, 61
Reviews edition, McGraw Hill
International Edition.
Software Engineering, A
Statistical practitioner’s Approach-
13 07-06-2024 Software Quality 5&5 Roger S. Pressman, 6™
Assurance edition, McGraw Hill
International Edition.
Software Engineering, A
ractitioner’s Approach-
14 | 10-06-2024 Software 585 | RogerS Pressman, 6"
Reliability edition, McGraw Hill
International Edition.
Software Engineering, A
The 1SO 9000 practitioner’s Approach-
15 11-06-2024 Quality 5&5 Roger S. Pressman, 6"
Standards edition, McGraw Hill
International Edition.
Software Engineering, A
The 1SO 9000 practitioner’s Approach-
16 12-06-2024 Quality 5&5 Roger S. Pressman, 6™
Standards edition, McGraw Hill
International Edition.

Signature of HOD

Date:

Note:

1. Ensurethat al topics specified in the course are mentioned.
2. Additional topics covered, if any, may also be specified in bold.
3. Mention the corresponding course objective and outcome numbers against each topic.

AY: 2023-24

Il B.Tech Il Sem

=

Signature of faculty

Date:

Software Engineering

. Anurag

Course Fle A\ EETEETEEES
Department of Information Technology
LESSON PLAN (U-I)
Lesson No: 01,02,03,04 Duration of Lesson: 3hr 20 min

Lesson Title: Introduction to Software Engineering: The Evolving Role of Software, Changing Nature of
Software, Software Myths.

Instructional / Lesson Objectives:

e To make students understand role of software
e To familiarize students on software types
e To understand students the concept of various myths in software development.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

20 min for taking attendance
160 min for the lecture delivery
20 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3..)

Refer assignment — | & tutorial-1 sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File An‘“
Department of Information Technology
LESSON PLAN (U-1)
Lesson No: 05,06,07 Duration of Lesson: 2hr 30 min

Lesson Titlee A Generic View of Process. Software Engineering- A Layered Technology, A Process
Framework, The Capability Maturity Model Integration (CMMI).

Instructional / Lesson Objectives:

e To make students understand layers of software technology
e Tofamiliarize students on framework activities
e To understand students the concept of capability maturity levels.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

15 min for taking attendance
120 min for the lecture delivery
15 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3..)

Refer assignment — | & tutorial-1 sheets

Bt

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File

Department of Information Technology

LESSON PLAN (U-I1)

Lesson No: 08,09,10,11,12 Duration of Lesson: 4hr 10 min

Lesson Title: Process Models: The Waterfall Model, Spiral Model and Agile Methodol ogy

Instructional / Lesson Objectives:

To make students understand software models

To familiarize students on waterfall model

To understand students the concept of agile models.
To provide information on XP and Scrum.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

25 min for taking attendance
200 min for the lecture delivery
25 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3..)

Refer assignment — | & tutorial-1 sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File o
Department of Information Technology
LESSON PLAN (U-11)
Lesson No: 01,02,03,04,05 Duration of Lesson: 4hr 10 min

Lesson Title: Software Requirements: Functional and Non-Functional Requirements, User Requirements,

System Requirements, Interface Specification, The Software Requirements Document.

Instructional / Lesson Objectives:

To make students understand software requirements
To familiarize students on requirements specification
To understand students the concept interfaces.

To provide information on SRD.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

25 min for taking attendance
200 min for the lecture delivery
25 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3.))

Refer assignment — Il & tutorial-11 sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File An‘“
Department of Information Technology
LESSON PLAN (U-11)
Lesson No: 05,06,07,08,09 Duration of Lesson: 4hr 10 min

Lesson Title: Requirements Engineering Process. Feasibility Studies, Requirements Elicitation and

Analysis, Requirements Validation, Requirements Management.

Instructional / Lesson Objectives:

To make students understand feasibility report

To familiarize students on requirements gathering

To understand students the concept validating requirements.
To provide information on managing SRD.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

25 min for taking attendance
200 min for the lecture delivery
25 min for doubts session

Assignment / Questions;
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3.))

Refer assignment — Il & tutorial-11 sheets

Bt

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
ATS\A

(An Autonomous Inst itution

Course File

Department of Information Technology

LESSON PLAN (U-I1T)

Lesson No: 01,02,03,04,05,06 Duration of Lesson: 5hr 00 min

Lesson Title: Design Engineering: Design Process and Design Quality, Design Concepts, The Design
Model.

Instructional / Lesson Objectives:

To make students understand design process

To familiarize students on design quality guidelines

To understand students the concept of design characteristics.
To provide information on devel oping design model.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

30 min for taking attendance
240 min for the lecture delivery
30 min for doubts session

Assignment / Questions;
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3.))

Refer assignment —I11 & tutorial-111 sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course Fle A\ EETEETEEES
Department of Information Technology
LESSON PLAN (U-I11)
Lesson No: 07,08,09,10,11,12 Duration of Lesson: 5hr 00 min

Lesson Title: Creating an Architectural Design: Software Architecture, Data Design, Architectural Styles
and Patterns, Architectural Design

Instructional / Lesson Objectives:

To make students understand software architecture

To familiarize students on design data design levels

To understand students the concept of architecture types.
To provide information on designing software architecture.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

30 min for taking attendance
240 min for the lecture delivery
30 min for doubts session

Assignment / Questions;
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3.))

Refer assignment — 111 & tutorial-111 sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

| A, Anurag
Course File
AAA

utonomous Institution

Department of Information Technology
LESSON PLAN (U-111)

Lesson No: 13,14,15,16,17,18 Duration of Lesson: 5hr 00 min

Lesson Title: Object-Oriented Design: Objects and classes, An Object-Oriented design process, Design evolution
Performing User interface design: Golden rules, User interface analysis and design, interfaceanalysis, interface
design steps, Design evaluation.

Instructional / Lesson Objectives:

To make students understand Obejct oriented design

To make the students understand some design rules

To understand students the concept of class sequence diagrams.
To provide information on designing Object oriented design

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

30 min for taking attendance
240 min for the lecture delivery
30 min for doubts session

Assignment / Questions,
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3.))

Refer assignment — 111 & tutorial-111 sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
ATS\A

(An Autonomous Inst itution

Course File

Department of Information Technology
LESSON PLAN (U-1V)

Lesson No: 01,02,03,04,05,06,07,08 Duration of Lesson: 6hr 40 min

Lesson Title: Testing Strategies: A Strategic Approach to Software Testing, Test Strategies for
Conventional Software, Black-Box and White-Box Testing, Validation Testing, System Testing, The Art
of Debugging.

Instructional / Lesson Objectives:

To make students understand testing strategies

To familiarize students on unit testing and integration testing
To understand students the concept of testing techniques.

To provide information on process of debugging.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

40 min for taking attendance
320 min for the lecture delivery
40 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3..)

Refer assignment — 1V& tutorial-1V sheets

Bt

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File o
Department of Information Technology
LESSON PLAN (U-1V)
Lesson No: 09,10 Duration of Lesson: 1hr 40 min

Lesson Title: Metrics for Process and Products: Software Measurement, Metrics for Software Quality.
Instructional / Lesson Objectives:

e To make students understand metrics and measurements
e To familiarize students on software metrics
e To provide information on quality metrics.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

10 min for taking attendance
80 min for the lecture delivery
10 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3..)

Refer assignment — 1V & tutorid-IV sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag

Course File o
Department of Information Technology
LESSON PLAN (U-V)
Lesson No: 01,02,03,04,05 Duration of Lesson: 4hr 10 min

Lesson Title Risk Management: Reactive Vs Proactive Risk Strategies, Software Risks, Risk
Identification, Risk Projection, Risk Refinement, RMMM.

Instructional / Lesson Objectives:

To make students understand risk strategies

To familiarize students on risks identification
To understand students the concept risk analysis.
To provide information on RMMM plan.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

25 min for taking attendance
200 min for the lecture delivery
25 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3.))

Refer assignment — V& tutorial-V sheets

Bt

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File
Department of Information Technology

LESSON PLAN (U-V)

Lesson No: 06,07,08,09,10,11 Duration of Lesson: 5hr 00 min

Lesson Title: Quality Management: Quality Concepts, Software Quality Assurance, Software Reviews,
Formal Technical Reviews, Statistical Software Quality Assurance, Software Reliability, The 1ISO 9000
Quality Standards.

Instructional / Lesson Objectives:

To make students understand software quality

To familiarize students on quality assurance activities
To understand students the concept SQA.

To provide information on 1SO standards.

Teaching AIDS : PPTs, Digital Board
Time Management of Each Class

30 min for taking attendance
240 min for the lecture delivery
30 min for doubts session

Assignment / Questions:
(Note: Mention for each question the relevant Objectives and Outcomes Nos.1,2,3,4 & 1,3..)

Refer assignment — V& tutorial-V sheets

Signature of faculty

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

Department of Information Technology
ASSIGNMENT -1

This Assignment corresponds to Unit No. 1

. Anurag
AT\

(An Autonomou

s Institution)

Question : Objective | Outcome
No. Question No. No.
1 What are the Characteristics of software? 1 1
2 What is software myths? 1 1
3 Explain Software Process framework. 1 1
4 Define Software Engineering 1 1
5 Explain about Process Patterns? 1 1
Signature of HOD Signature of faculty

Date:

AY: 2023-24 Il B.Tech Il Sem

Software Engineering

Course File

Department of Information Technology
ASSIGNMENT -2

This Assignment corresponds to Unit No. 2

. Anurag
AT\

(An Autonomous Inst itution

Qu:lit? on Question Oijegt.ive Ouﬁ:gme
1 What is SRS document? 2 2
2 What are Verification & Vaidation requirements? 2 2
3 Write about Requirement Elicitation and Analysis. 2 2
4 Discuss Various myths about Software Development. 2 2
What is SRS document? Explain in detail about the users IEEE
S structure of Software Requirement Specification document. 2 2

Signature of HOD

Date:

AY: 2023-24 Il B.Tech Il Sem

Signature of faculty

Date:

Software Engineering

. Anurag
AT\

(An Autonomous Inst itution

Course File

Department of Information Technology

ASSIGNMENT -3

This Assignment corresponds to Unit No. 3

Question . Objective | Outcome
No. Question No. No.

1 Explain Design process and design quality. 3 3

2 Explain software architecture. 3 3

3 Explain architectural styles and patterns with neat diagrams 3 3

4 Explain class diagrams, sequence diagrams, 3 3

Write briefly about collaboration diagrams, use case diagrams,

5 component diagrams with neat sketches 3 3
Signature of HOD Signature of faculty
Date: Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

Department of Information Technology
ASSIGNMENT -4

This Assignment corresponds to Unit No. 4

. Anurag
AT\

(An Autonomou

sssss itution

Qulielsotf on Question Oijegt.ive Ouﬁ:(()).me
1 Explain Black box testing with neat sketch. 4 4
2 Explain white box testing. 4 4
3 What is verification and validation Testing? 4 4
4 Explain with a neat sketch What is system testing? 4 4
5 Explain Software measurement, metrics for software quality. 4 4

Signature of HOD

Date: Date:

AY: 2023-24 Il B.Tech Il Sem

Signature of faculty

Software Engineering

Course File

Department of Information Technology
ASSIGNMENT -5

This Assignment corresponds to Unit No. 5

. Anurag
AS\A

(An Autonomou

sssss itution

Question . Objective | Outcome
No. Question No. No.
1 What is a software risk? 5 5
5 What is the difference between Reactive and proactive risks? 5 5
3 Explain the quality concepts. 5 5
4 Explain Risk projection and refinement 5 5
5 Explain various types of Software reviews. 5 5

Signature of HOD

Date: Date:

AY: 2023-24 Il B.Tech Il Sem

Signature of faculty

Software Engineering

. Anurag
AT\

(An Autonomous Inst itution

Course File

Department of Information Technology

TUTORIAL -1
Thistutorial correspondsto Unit No. 1 (Objective Nos.: 1, Outcome Nos.: 1)

1 is collection of programs,data,documents

2. The misbelieves about software development called as

3. The bedrock that supports software engineering is layer

4. Thefoundation for software engineering is layer

5. tools provide automated support for Software engineering
6. The also called asclassic life cycle

7. SDLC standsfor

8. Issoftware project tracking and control is an umbrella activity (True/False)?

9. isthe father of Software Engineering?

10. A model that is the demo implementation of the system.

Signature of HOD Signature of faculty

Date: Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File

Department of Information Technology

TUTORIAL -2

Thistutorial corresponds to Unit No. 2 (Objective Nos.: 2, Outcome Nos.: 2)

1. The are the descriptions of the system services and constraints

2. requirements are statements of functions the system should provide to users

3. reguirements are constraints on the services offered by the system.

4. Therequirements that come from the application domain of thesystemcalled requirements
5. Requirements written in natural language for users called reguirements

6. Requirementswritten in structured language for developersarecalled requirements

7. SRS stands for

8. Mention the two types of interviews conducted with stakeholders

9. The SRS document is also known as specification

10.Ethnography means Technique
Signature of HOD Signature of faculty
Date: Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File
Department of Information Technology

TUTORIAL SHEET -3

1. Software isablueprint for constructing the software

2. The structure of componets,interfaces and datais called

3. softwareisdivided into separate components called

4, classes define human computer interaction

5. UML stands for

6. isthe first step in the software development life cycle ?
7. Indesign phase Is the primary area of concern ?
8. (The person) designs and implement database structures
0. tool isusefor structured designing ?
10. Also called Golden rules?
Signature of HOD Signature of facdity
Date: Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Inst itution

Course File
Department of Information Technology

TUTORIAL -4

This tutorial correspondsto Unit No. 4 (Objective Nos.: 3, Outcome Nos.: 3)

1. The process of finding errors in software called

2. The process of correcting errors in software called

3. Testing the individual components and modulesis called
4. Testing the software with requirementsis called

5. testing is also known as glass box testing

6. testing is also known as behavioural testing

7. KLOC standsfor

8. DRE stands for

9. Alphatesting is done at side

10. Beta testing done at side
Signature of HOD Signature of faculty
Date: Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Inst itution

Course File

Department of Information Technology

TUTORIAL SHEET -5

Thistutorial corresponds to Unit No. 5 (Objective Nos.: 5, Outcome Nos.: 5)

1. _ isapotentia problem that may or may not occur
2. arethe 2 types of risk strategies

3. are the 3 types of risks

4. arethe 3 risk factors

5. RMMM stands for

6. SQA standsfor

7. FTR standsfor

8. Softwarereliability MTBF=

0. risks are derived from the software or hardware technologies that are used to
develop the system?

10. Which of the following risk is the failure of a purchased component to
perform as expected?

Signature of HOD Signature of faculty

Date: Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File

Department of Information Technology

EVALUATION STRATEGY

Target (s)

a. Percentageof Pass : 95%

Assessment Method (S) (Maximum Marks for evaluation are defined in the Academic Regulations)

a. Daily Attendance
b. Assignments

Online Quiz (or) Seminars

o

d. Continuous Internal Assessment
e. Semester / End Examination

List out any new topic(s) or any innovation you would like to introduce in teaching the subjects in this
semester

Case Study of any one existing application

Signature of HOD Signature of faculty

Date: Date:

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

. Anurag
AS\A

(An Au

Department of Information Technology

COURSE COMPLETION STATUS

Actua Date of Completion & Remarksif any

oooooooooooo itution

Units Remarks Objective No. | Outcome No.
Achieved Achieved

Unit 1 completed on 20-02-2024 1 1

Unit 2 completed on 04-03-2024 2 2

Unit 3 completed on 16-04-2024 3 3

Unit 4 completed on 30-04-2024 4 4

Unit 5 completed on 12-06-2024 5 5

Signature of HOD

Date:

AY: 2023-24

Il B.Tech Il Sem

Signature of faculty

Date:

Software Engineering

. Anurag

Course File
YV L)Y W ENGINEERING COLLEGE
(An Autonomous Institution)

Department of Information Technology

Mappings

1. Course Objectives-Course Outcomes Relationship Matrix
(Indicate the relationships by mark “X”)

Course-Outcomes
1 2 3 4 5
Course-Objectives
1 H
2 H
3 H
4 H
5 H
2. Course Outcomes-Program Outcomes (POs) & PSOs Relationship Matrix
(Indicate the relationships by mark “X”)
- o @ Y 0 © Y~ @ ok = p S by Py ?
el e|e|e|8|e||8 |8 |92 |8 |33
CO-1 H M M H
CO-2 | M H H M M M H
CO-3 M M H M H M M H
CO-4 L M H M H M H
CO-5 L M M M H M H

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

. Anurag

A,’ ‘,‘ ENGINEERING COLLEGE
(An Autonomous Institution)

Department of Information Technology

Rubric for Evaluation

Performance Criteria

Unsatisfactory

Developing

Satisfactory

Exemplary

1

2

3

4

Research & Gather
Information

Does not collect any
information that
relates to the topic

Collectsvery little
information some
relates to the topic

Collects some
basic Information
most relates to the

topic

Collectsagreat ded
of Information all
relates to the topic

Fulfil team role’s duty

Does not perform
any duties of

Performs very little

Performs nearly all

Performs all duties of

assigned team role duties. duties. assigned team role.
Alwaysrelies on Rarely doesthe Usgally does the Alwgy s doesthe
Share Equally othersto do the assigned work - often assigned work - . 2ssgzedlwork
work needs reminding rarely ngzeds without aving tobe
’ ' reminding. reminded
. Isawaystalking— | Usudly doing most of Listens, but .
Listen to o;nher team never dlowsanyone | thetaking--rarely sometimes talks L|51$n§ and speteks a
mates else to speak. alows otEers to too much. ar amount.
AY: 2023-24 Il B.Tech Il Sem

Software Engineering

Course File

Department of Information Technology

D Anurag
A!"\A

AAAAAAAAA

sk am el -

oooooooooooooo

e Anurag NA AC (44 A+

AY TN ENGINEERING COLLEGE

AW AUTONRumSun sttt Ananths " CVEML. Keder. S

wyapet (D¢
by AIOTE, Mew D B AN ated 1o JNTUM WAV, 71 LI 00 Iy

SMELL o mae d N

L. Tolprnasn
2]

ansce

ADS 0

G\' MZARTO

I B.TECH VI SEMESTER | MID EXAMINATIONS - MARCH 2024

Branch: B.Tech. CE,EEEMECH & ECE

DATE 21.03.2024 AN Session : Afternoon
SUBJECT:SOFTWARE ENGINEERING

Max marks:20m

TIME 90 Minutes

PART - A
ANSWER ALL THE QUESTIONS.
Q.No Question
1 What is Work Product?
2. What is deployment?
3. What is Ethnography?
4. What is avolatile Requirement?
5. What is Data abstraction?
PART -B
NSWER ALL THE QUESTIONS.
Q.No Question
6. Briefly explain about Software Myths?
OR
7. Explains Software Process Framework?
8. Explain about Prototype Model?
What is the traceability Matrix?
A OR

0. Explain about Requirements discovery process?

10. What is Modularity?
OR
11. What is Concurrent Process Model ? Explain with Example?

AY: 2023-24 Il B.Tech Il Sem

5 X 1M = 5M
CO BTL
CO1 2
COo1 2
CO2 2
CO2 2
CO3 2
3 X 5M =15M
CO BTL
CO1 2
CO1 2
CO2 2
CO2 2
CO3 2
CO3 2

Software Engineering

e Anurag

“. L ENGINEERING COLLEGE

e R

ARSITATION GOURTR. 1« i 11

An Autonomous Instirution A hagiri (V&M,

).
(Approved by AICTE, New Delhl & Affillated to JNTUH) Www.anuag.ac.in

<. GRADE

Suryapst (Dt.}, Telangana — 508 206
+01 9553122270

III B.TECH VI SEMESTER I MID EXAMINATIONS - JUNE 2024
Max. Marks : 20M

Branch : B.Tech. COMMON TO CE, EEE, MECH & ECE

Date : 20-Jun-2024 Session : Afternoon Time : 90 Min
Subject : SOFTWARE ENGINEERING,CS6110E
PART - A
ANSWER ALL THE QUESTIONS 5X IM=5M
Q.No Question CO BTL

1. What is mean by Software Procedure? CO3 2

2. Explain boundary value analasis? CO4 2

3. what is alpha testing? CO4 2

4. explain software quality briefly? CO5 2

5. What are the characterstics of Risk? CO5 2

PART -B
ANSWER ALL THE QUESTIONS 3X5M=15M
Q.No Question CO BTL

6. Explain how place the user in control? CcOo3 2
OR

7. Explain golden rule Make the interface consistant? CO3 2

8. Explain about ISO 9126 quality factors? CO4 2
OR

9. what are various catagataries of integration testing? CO4 2

10. differece between Risk mitigation and risk management? CO5 2
OR

11. Explain about formal technical review ? COs 2

Pana * 14

Course File

Programme : B.Tech

Department of Information Technology

Year: III-II

Course: Theory

. Anurag
ATS\A

Continuous Internal Assessment (R-18)

(An Autonomous Inst itution

AY: 2023-24

Course: Software Engineering Section: CIVIL Faculty Name:K.Bikshapathi

Assign

Assig

S.No H.T.No Name of the Mid - ment - Mid -I | Mid - nmen Mid - II | AV
e Student I I Total II t - 11 Total G
AMULYA
1 21C11A0101 BARMAVATH 18 5 23 14 5 19 21
2 |21C11A0103 |ARIF SHAIK 11 5 16 11 5 16 16
3 |21C11A0104 [GOPI BHUKYA Ab 0 0 Ab 0 0 0
GOWTHAMI
4 |21C11A0105 GADDE 13 5 18 18 5 23 21
KARTHEEK
5 [21C11A0106 {GOUD 8 5 13 10 5 15 14
MEKAPOTHULA
KARTHIK
6 [21C11A0107 SRILOJU 11 5 16 20 5 25 21
MEGHANA
7 |21C11A0108 PAVURALA 17 5 22 20 5 25 24
NAGAVARAPRA
8 |21C11A0110(SAD AB 0 0 AB 0 0 0
PANUGOTHU
NANDINI
9 |21C11A0111 KOMERA 13 5 18 14 5 19 19
NIKITHA
10 |21C11A0112 GANDHAM 18 5 23 16 5 21 22
PRATHYUSHA
11 |21C11A0114 BHUKYA 13 5 18 17 5 22 20
RISHITHA
12 [21C11A0115 PONNA 16 5 21 19 5 24 23
SAI KUMAR
13 |21C11A0116 BANOTHU 10 5 15 10 5 15 15
SAIKIRAN
14 |21C11A0117 \MAHESHWARAP 9 5 14 15 5 20 17
U
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
AT\

(An Autonomous Institution)

Course File

Department of Information Technology

15 [21c1180118 | DOLATEA | 16 5 21 14 | s 19
16 |22C15A0101 |ANUSHA GUNTI | 13 5 18 | 20 | 5 25
17 |22C15A0102 [y A SN 16 5 21 | 20 | 5 25
18 |22C15A0103 [JARESH 11 5 16 15 | 5 20
19 |22C15A0104 [S AL 12 5 17 12 | s 17
20 |22C1540105 | NACARAU 11 5 16 13 | s 18
21 |22C15A0106 | oo amoina 10 5 15 15 | 5 20
22 |22€1540107 |SASANIAY 11 5 16 17 | s 22
23 |22C1540108 |0 R 11 5 16 14 | s 19
24 |22C1540100 [P0 10 5 15 11| s 16
25 |22C1540110 |3 XASK! 16 5 21 13 | 5 18

No. of Absentees: 25

Total Strength: 25

B

Signature of Faculty

Signature of HoD

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

. Anurag
ATS\A

(An Autonomous Inst itution

Course File

Department of Information Technology

Continuous Internal Assessment (R-18)

Programme : B.Tech Year: III-II Course: Theory AY: 2023-24

Course: Software Engineering Section: EEE

Faculty Name: K.Bikshapathi

Assign Mid Mi | Assign
S.N Name of the . gn| g 8N | Mid - IT | AV
H.T.No. Mid - I | ment - d - | ment -
o. Student Tot Total G
I II II
al
AKHIL REDDY
1 [21C11A0201 SUDHIREDDY 7 5 12| 8 5 13 13
2 |21C11A0204 [LOKESH PAGIDI 5 5 10 | 13 5 18 14
NAVEEN
3 |21C11A0205[KUMAR 13 5 18 | 13 5 18 18
MEKALA
RAVITEJA
4 |21C11A0206 BASHIPANGU 12 5 17 | 11 5 16 17
SAI KUMAR
5 [21C11A0207 BANOTHU 9 5 14 | 13 5 18 16
SAI TEJA
6 [21C11A0208 MOTHUKURI 13 5 18 | 12 5 17 18
SANDEEP
7 [21C11A0209 MANDA 14 5 19| 8 5 13 16
SATYANARAYAN
8 [21C11A0210 A SANGISETTI 14 5 19 | 18 5 23 21
SEEMA FARHIN
9 |21C11A0211 MOHAMMAD 19 5 24 |1 19 5 24 24
SUMANTH
10 |21C11A0212 KANAKAM 9 5 14 | 9 5 14 14
TEJA KIRAN
11 |21C11A0213 KARLAPUDI 7 5 12 | 13 5 18 15
VENKATESH
12 |21C11A0214 BALEBOINA 5 5 10| 8 5 13 12
VINOD KUMAR
13 |21C11A0215 LIKKI 8 5 13|11 5 16 15
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

Department of Information Technology

. Anurag
ATS\A

(An Autonomous Inst itution

14 [22C1540201 [FPORA 12 5 |17]11] s 16 |17
15 |22C15A0202 ‘é%%%%?{%spiul 13 5 |18|10| 5 15 |17
16 |22C15A0203 jﬁﬁﬂm 14 5 |19)13] s 18 | 19
17 (2201540204 [LIOSHNA 9 5 |14|11] s 16 |15
18 (2201540205 |3 TATMAD 14 5 |19|16| 5 21 |20
19 [22C1540206 [>4 SUPRIA 18 5 |23|16| 5 21 |22
20 |22C15A0207 [SANOEED 11 5 |16|12] 5 17 |17
21 |22C15A0208 |2 7 5 |12/9]| s 14 |13
22 |22C1540209 [P RV 12 5 |17]13] 5 18 |18
23 |22C15A0210 ?E’I\IE&P}IS 12 5 |17]17] s 22 | 20
No. of Absentees: 23
Total Strength: 23
Signature of Faculty
Signature of HoD
AY: 2023-24 111 B.Tech Il Sem Software Engineering

Course File

Programme : B.Tech

Course: Software Engineering Section: MECH

. Anurag
ATS\A

(An Autonomous Inst itution

Department of Information Technology

Continuous Internal Assessment (R-18)

Year: III-II Course: Theory AY: 2023-24

Faculty Name: K.Bikshapathi

Assig . . . Mid -
S.N H.T.No. Name of Mid - I|nmen Mid - I | Mid - | Assignm I |AVG
o. the Student Total II ent - II
t-1I Total
KARTHIK
1 | 21C11A0301 KOMPELLI 10) 15 12 5 17 16
KESHAVA
2 | 21C11A0302 SAI 12 S 17 16 S 21 19
HEMANTH
ABRAPURI
SANDEEP
3 | 21C11A0305 [REDDY 9) 14 13 5 18 16
KUNDURU
SRINIVASA
4 | 21C15A0312 [RAO 11 S 16 15 S 20 18
ANNAM
S | 22C15A0301 |JAGAN S 9 S 14 10 S 15 15
MAHENDRA
6 | 22C15A0302 CHEDDE 11 5 16 10 5 15 16
RAGOTHAM
7 | 22C15A0303 UPPULA 9 5 14 12 S 17 16
SHIVA
8 | 22C15A0304 ETIKALA 14 S 19 11 5 16 18
SYED
9 | 22C15A0305 RIZWAN 16 S 21 20 S 25 23
Signature of the Faculty
No. of Absentees: 9
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

Total Strength: 9

AY: 2023-24

Department of Information Technology

Il B.Tech Il Sem

. Anurag

Aﬁ‘ ENGINEERING COLLEGE
(A nomous Institution)

n Auto

Signature of Faculty

Signature of HoD

Software Engineering

Course File

Programme : B.Tech

Department of Information Technology

Continuous Internal Assessment (R-18)

Year: III-II

Course: Software Engineering Section: ECE

Course: Theory

Faculty Name: K.Bikshapathi

. Anurag
ATS\A

(An Autonomous Inst itution

AY: 2023-24

Assig | Mid - .4 | Assig | Mid -
SN| mrNo. | Nameofthe lyig.rnmen| 1 |M nmen| m |ave
) t - I |Total t - II | Total
1 |[19C11A0422|MOUNIKA MADDI| 17 5 22 17 5 22 22
MAHESH KUMAR
2 |[20C11A0427 GUNJA
AKHIL SAI
3 [21C11A0402 KORLAPTI
4 |21C11A0403 |ANIL SIRAMSETTI
S |[21C11A0404|ANIL BORRA
ANUSHA
6 [21C11A0405 THURAKA 9 S 14 16 S 21 18
ARCHITHA
7 |21C11A0406 REDDY MANDADI
8 [21C11A0407|ASIF SAYED 13) 18 15 S 20 19
ASRA BEGUM
9 [21C11A0408 SHEK
BALAJI
10 |21C11A0410 UTHARADHI 9 S 14 12 S 17 16
11 |21C11A0411 |BALAJI NIKAM
BANGARU BABU
12 |21C11A0412 BHUKYA
BHANU PRAKASH
13 |21C11A0413 CHOWGANI
14 |21C11A0415|BHARGAV AKULA| 17 S 22 17 S 22 22
BHAVANA GOUD
15 |21C11A0416 BANDI
BHAVANA
16 |21C11A0417 SATHULURI
BHAVANI
17 |21C11A0418 ELAVALA
BHAVYA SRI
18 [21C11A0419 VANGAVETI 19 5 24 16 5 21 23
CHAITANYA
19 [21C11A0420 KARNATI
AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

20

21C11A0421

Department of Information Technology

CHAKRADHAR
SAI PEDDOJU

. Anurag
AT\

(An Autonomous Inst itution

LLEGE
ion)

21

21C11A0422

CHARAN
CHENNOJU

22

21C11A0423

CHETAN SAI
GAVINI

23

21C11A0424

DEEPAK JUPUDI

24

21C11A0425

DEVIKA BOMMU

19 5

24

16

23

25

21C11A0426

DHANUSH
TANNEERU

26

21C11A0428

DRAKSHAYANI
VEMULA

27

21C11A0429

DURGA BHAVANI
DODDAPANENI

15 5

20

14

20

28

21C11A0430

GEETHANJALI
BORRA

29

21C11A0431

GNANESHWAR
KOSURU

30

21C11A0432

GOPIRAJU
GAVINI

31

21C11A0433

INDRASENA
REDDY
KURAKULA

32

21C11A0434

JARINA BEGAM
SHAIK

33

21C11A0435

KALYAN
PAMULAPARTHI

34

21C11A0436

KARISHMA
SHAIK

18 5

23

16

22

35

21C11A0438

KAVYA BOLLA

36

21C11A0440

LAHARI
DEVINENI

37

21C11A0441

LAVANYA
KASARLA

38

21C11A0442

LIKHITH KUMAR
SANGAPU

39

21C11A0443

LOKESH
THUMMA

18 5

23

13

21

40

21C11A0444

MAHENDER
REDDY
VUSTELLA

41

21C11A0445

MANOHAR
KOMMINENI

42

21C11A0446

MANOJ KUMAR

AY: 2023-24

Il B.Tech Il Sem

Software Engineering

Course File

Department of Information Technology

KOLA

(An Autonomous Inst itution

. Anurag
ATS\A

43

21C11A0447

MANOJ SAI
KETHAM

44

21C11A0449

NARESH REDDY
BEDEDALA

45

21C11A0450

NASEERUDDIN
BABA SHAIK

46

21C11A0451

NAVEEN REDDY
SANKALAMADDI

47

21C11A0452

NAVEEN
YARASANGI

10 5

15

12

17

16

48

21C11A0453

NAVYA
VURUKONDA

20 5

25

14

19

22

49

21C11A0454

NAVYASRI
POTLAPALLI

14 5

19

12

17

18

50

21C11A0455

NAZIYA BUSHRA
SHAIK

51

21C11A0456

NITHIN REDDY
BOMMAREDDY

52

21C11A0457

POOJITHA
ANANTHU

18 5

23

20

25

24

53

21C11A0458

PRASANNA
KUMAR
MEESALA

54

21C11A0459

PRAVEEN REDDY
KAKUNURI

55

21C11A0460

PRIYA P

56

21C11A0461

RAGHUVEER
NALLANCHAKRA
VARTHULA

57

21C11A0463

RAKESH BORRA

13 5

18

12

17

18

58

21C11A0465

RAKESH
MESHAM

20 5

25

20

25

25

59

21C11A0466

RAM KUMAR
ANASURI

11 0]

11

13

13

12

60

21C11A0467

RAMA KRISHNA
REDDY
AMARAVADI

61

21C11A0468

RAMAKRISHNA
MUNDRA

NO. OF ABSENTEES: 0
TOTAL STRENGTH: 17

AY: 2023-24

Il B.Tech Il Sem

Software Engineering

4. Anurag
AS\A

(An Autonomous Institution)

Course File

Department of Information Technology

SIGNATURE OF FACULTY

-‘.";'," LT

« -~ Y T 8

WV e)
x A

-

SIGNATURE OF HOD

AY: 2023-24 Il B.Tech Il Sem Software Engineering

Course File

Programme : B.Tech

Course: Software Engineering Section: ECE

. Anurag
ATS\A

(An Autonomous Inst itution

Department of Information Technology

Continuous Internal Assessment (R-18)

Year: III-II Course: Theory AY: 2023-24

Faculty Name: K.Bikshapathi

SN mnwe | Nmeofthe |widlasignm| wid x| wid-| p o0 e | v
1 |21C11A0469 Eﬁ%ﬁ:ﬁ 14| s 19 | 13| s 18 | 19
2 |21c1180470 |ROSHIN 20| s 25 | 16| 5 | 21 | 23
3 [21C11A0471 ?gﬁ%ggéoﬂ 11| 5 16 | 16| 5 | 21 19
4 |21c1180472 (52 SOVIIAM 100 | 5 25 | 17| 5 | 22 | 24
SAI
5 |21C11A0473 |MADHULATHA |15| 5 20 | 14| 5 | 19 | 20
PAIDIMARRI

6 |21C1140474 SR MAPHURL | o | 5 4 | 6 | 5 | 11 13
7 |21C1140475 SR KASIM g | s 17 | 8 | 5 | 13| 15
8 |21C11A0476 [PA0EENA 18| 5 23 | 13| 5 | 18 | 21
9 |21C11A0477 gﬁgﬁ:& 13| s 18 | 14 | s 19 | 19
10 |21C11A0478 3‘2%{&%%%? R

11 [21C11A0479 | SANEENA 16| 5 21 | 17| 5 | 22 | 22
12 |21C11A0480 |[SAMEER SHAIK

13 [21C11A0481 }Sﬁ;\/{é%RSH ATK

14 [21C11A0482 | DANORED 18| 5 23 | 19| 5 | 24 | 24
15 |21C11A0483 |SANDHYA DARA | 11| 5 16 | 13| 5 | 18 | 17
16 |21C11A0484 3‘82%“&(1\1“ 14| s 19 | 14| s 19 | 19
17 [21C11A0485 | S4B I 19| s 2 | 17| 5 | 22 | 23

AY: 2023-24 111 B.Tech Il Sem Software Engineering

Course File

18

21C11A0486

Department of Information Technology

SATYANARAYAN
A AMARABOINA

. Anurag
AT\

(An Autonomous Inst itution

LLEGE
ion)

19

21C11A0487

SHAREEF
SHAIK

20

21C11A0488

SHIVA BARI

21

21C11A0490

SHIVANI
GUDISE

14 5

19

13

19

22

21C11A0492

SHIVASAI
BARMAVATH

15 5

20

14

20

23

21C11A0493

SRAVYA
GOVINDU

12 5

17

12

17

24

21C11A0494

SRI SAI
SRINIVASA
PANINDRA
PIDATHALA

19 5

24

15

22

25

21C11A0495

SRI SAILAJA
PASUPULETI

26

21C11A0496

SRIDHAR
BOILLA

15 5

20

15

20

27

21C11A0497

SRIKANTH
MUNAGA

28

21C11A0498

SRIRAM
NANDIGAMA

29

21C11A0499

SUJITH KUMAR
BOGOJU

30

21C11A04A0

SUNIL
PATHANAPU

31

21C11A04A1

SUSHMA
THOKALA

18 5

23

15

22

32

21C11A04A2

TAGORE
KHANNA
SIDDAMSETTI

33

21C11A04A3

THAMRIN SHAIK

34

21C11A04A4

THARUN
THUMMEPALLI

14 5

19

12

18

35

21C11A04A5

UMA
MAHESWARI
BATHULA

19 S5

24

16

23

36

21C11A04A6

USHA SRI
PATTHIPATI

18 S5

23

15

22

37

21C11A04A7

VAHINI
CHOWDARY
KOGANTI

38

21C11A04A8

VAMSHI
BOLLEPALLI

AY: 2023-24

Il B.Tech Il Sem

Software Engineering

Course File

39

21C11A04A9

Department of Information Technology

VARSHITHA
KOMMAINENI

9

5

14

11

. Anurag
AT\

16

LLEGE
(An Autonomous Inst itution)

15

40

21C11A04B0O

VARUN KUMAR
KARNIKANTI

20

25

14

19

22

41

21C11A04B1

VEERAVENKAT
A SATYASAI
BALAKRISHNA
PRASAD P

20

25

19

24

25

42

21C11A04B5

VENKAT REDDY
KANDIMALLA

43

21C11A04B6

VENKAT SAI
VALLURI

44

21C11A04B7

VENKATESH
MOGARALA

45

21C11A04B9

VENKATESH
KALVAKUNTLA

46

21C11A04CO

VENNELA
EATUKURI

20

25

16

21

23

47

21C11A04C1

VIGNESHWAR
REDDY PANDIRI

48

21C11A04C2

VIGNESHWAR
REDDY
POSHAM

49

21C11A04C3

VIJINITH
UPPALA

13

18

18

23

21

50

21C11A04C4

VIKAS MAMIDI

51

21C11A04C5

VILASH GARA

52

21C11A04C6

VINAY REDDY
SAMA

14

19

17

22

21

53

21C11A04C7

VINITHA
KANDULA

13

18

13

18

18

54

21C11A04C8

VIVEK VALLAPU

55

21C11A04C9

YASHWASRI
KOTHA

56

22C15A0401

ASRITHA
PONNA

57

22C15A0402

LAHARI BATTU

17

22

22

16

38

30

58

22C15A0403

NIKHIL
KURDULA

14

19

19

11

30

25

59

22C15A0404

NIKHIL
SIRIPURAM

60

22C15A0405

SAI MAHESH
YERRAMSETTI

18

23

12

17

20

AY: 2023-24

Il B.Tech Il Sem

Software Engineering

Course File

61 |22C15A0407

Department of Information Technology
TRIVENI ERUGU

(An Autonomous Inst itution

. Anurag
AT\

LLEGE
ion)

62 |22C15A0408

VENKATA SAI

BOMMISETTY

JASWANTH 14 5 19 7 5 12

16

63 |22C15A0409

YASHWANTH
VEGGALAM

NO. OF ABSENTEES: 0
TOTAL STRENGTH: 34

AY: 2023-24

SIGNATURE OF FACULTY

SIGNATURE OF HOD

Il B.Tech Il Sem

Software Engineering

Course File A@G Anurag

AMA ENGINEERING COLLEGE
(

nnnnnnnnnnnn

Department of Information Technology

-

Tsem,Toid < D"M‘.‘_& incexing © {1 Nab oL
*q\ c}lg Explatr aboud Soffwave an drﬁmi &‘3 7.5

-l

Softeoave - 1t is oo program or Sef 04 onamm cordatnin
ons 4had Povide desiced dunchiorals

deyigning ond buﬂ«th .Sowu.\nq 1had te
Jindy & CoM - %Y echive soludier {0
.So{hoouc. &n‘-ncu!na S
{q\tn‘ arnd maln{o-Nm’ 5o
oppvoack 4o Seldvave 4

vt dhat om\sh cxyeale
velioble and roadindour e solbvaxe : 7 v
'-osb*l-wmﬂ_ Ergingsving includey o vayied dech
dologies, lnclul&w‘ ‘rtqu:i“muh aval W g X "W“U '

¢, Process o} designing | cuvuopzn

woye T4 s o

S TP ——

e

w {oolt and Le B
e&l‘ Iuh\‘ Atveloped 40 !mpvm Ahe SoHooaxe Jeowel i

= > 3ol lvaxe Erginctring (3 mairly uyed 401 la

axt $~.Q\¢Ml ~odbhaey dhor So‘w"c ﬁo’ram: o Owhc:xﬂ ong
—31he main goal o} Soldwaxe Erginceying

'3 Lo davelop s 4voa
codions Joy fraptoving yualidy . budyet and time QH,::,\:: 5%
2 Eaplain sedtwane myths 7 .
! Hoxt Ewpetencad Ewpevls have teen
. ey indeyprebations) oy migleading odidaday which cyeales

opmient Piocess -

Tyees of mighhy :-

* Harage et rn\f{kx =
¥ curlomer mythy g o

¥ pPractidiones's gt _
e Boeviianal g\ AT
- f'n\r\L 1 i the avatla

“ myth 1, A-uhg meTe Progromimies wahen dhe wsavk

-n«.rmg 7

7 tnsﬁud.
) umg s the process of
. o NVHcA-JAv Puvpore ani

Syttematic and d:sa’l uu.l

1 s dey ting dnd wa o3
~> 14 is voaprdl e_volvn\ field and rz‘ AT 2 *M
'?Ll axe CDN{:M

It Pojecds boxed on Jo{&w

by o .suru.HMmM (-!alJu beliefs

dor morageroent’ dnrd deehnical etople The \W’u o Soddioaye nlf’::km
ogths ace listed belows. ‘ v 8

|||||||||||

aprhi

Course File A@G Anurag

AMA ENGINEERING COLLEGE
(

nnnnnnnnnnnnnnnnnnnnnnn

Department of Information Technology

A.:‘ - -

4 Lo thivd pa

M vy v M (. 55 ow{-som'd'\‘] the - Jo}hoae: "’°J“.E | “"[;
| can velam M.L lek Ahat pavty build 1 7
|Customey mybhy -
4 gth (@) - Gencral Statemetl o obj jeckive is ¢ €nouh 4o be
W(kn‘ Progxoms , 4he details tan be "’"ld n later
gt) - Sefbwave s £arydo Myc becaust sokm"» ‘s 'ﬂﬁ%
ﬁa.d.-t&-‘omv’s myth i~ Shie
4 gth £4) 1 onee bhe

S ST el "

og-ram s wﬂu-'.n sdhe Jobha-& Leer -Luv\(
N Mmyth (1) (- wnlil bhe progrann (s -«rw\mng ’ Uu_w:. (s e way of
O3%emtng the quodity

* kb (3) 5 - the onb' Au.wmblr_ voork. puduc& is H\c wo‘fkln?
Progsorn .

» oyth (4D Mum Ergineeying Creabtes voluminous ard unnece
5@:3 400&'*\('\{0\&10-\ o d lvwo;nqbly slowos dovon So{-hoonrt develop

3 30"&(&% s Sb"“’m\'t P‘DC’LS “Qm(m-{k ’

“2Establishey Ahe Yournd atipr Yot d complete sotiisave Process

—2 fdontities o numbey o} .l-zoun,u(:cwk acdivities applicable o al) :
Sefdwaye peojecks) des

—> Alsy include o seb o) ‘

LR
y‘b*zlla ac&w.ug

& Ahad an 2 z<l
0Lx08s the Erdive Soltusrave Process at ave applicablec
A Process Arne wovk. , b
rsf—t‘-f‘t’.“."_‘ es3 f‘“%L_{femewofg‘ v
Precess Ao rmevsovk wmbvella octividtes ‘
[Ondovelio actiyidre Evarme ok ocliv

s e o] e gt

™l (t&(oms -’-JL‘N(--\
£2% ‘ d l ‘w-nj J
Ryl —J

AL T A

4. Anurag
AS\A

nnnnnnnnnnnnnnnnnnnnnnn

Course File

Department of Information Technology

IE——

‘used oy o basit Yoy the deyeviphion 8 process wodels
Gerexic @voceas activilies

coryynunieodior.
P\ou\hw\‘

mode) \tng
conyuction,
Deployment

-

°}y Ergiveeving c \ertvenled by o v be - <
AR ettt e e Ut

oo ve Pm'ju‘.{ tvoack h«i ond condvol

4wrave guality asyuvancs '

xe (on]—{%u\’n&'ow nr\o.r\clagm{-

cuyak) .‘{w‘ managermen t

Move ret ek

Ak eraragerant “Assighrent 91
Ph\'h a boud hon——;uml;m‘ :(—!:;:—Htmc.-n{.s 7

Y dedine Systern Piopevdiey ond Conséraing . nol Concesned woith
e Specitic funclions delivered by the System

Mottt criditel thar funclional ye ivernent % ¢A = ; . v
Nervatad 4 Avv\o—l el Hherm Lhe Co::kk "'&lcrt\ :: u':\c‘:‘sai.‘;:‘("m' 'C"" 3

TYPes o) ron - Jusckional vequivermnents - i
4. Pioducd cequimermnents | speciiyFroduct behaviowy ' |
1) Wwaakil 2 '
<% “e i SPace
> ey | —_[.-.pukw
O Reliakils

b)) ?bﬂ;abili\\i
2. OT*‘C\“"M{'%DM\ th\uf!n\(ﬂ\s - Devived fvermy pelicies and i:toracl';,,‘jg
V) Lelives

iy Taeglerrardo bion

iy standovd '

2. Enletnal veqaiiverments — Pexived o Jacddors Eakevnal o tha

5 ‘——e.--e:_';m!‘

&

4. Anurag
AIS\A

utonomous Insti

Course File

Department of Information Technology

Iy slern an.fl i .h“v('lorrmh(' proceys

) ’nlun}”fmloﬂn'h,

iy Ethical X “‘"”‘1

W Leqisladive —{ Peivacy 2

/nvl.lr Y U.,w’:\

Non - Junclional vequivernent
[=5 LNty Need)

| : *EBeconuge o) hu,]',| o
=R Ovjanipalioral policsés

- Need oy tulcwu[/ov'ﬂl.’-h{y soldl Olhey '1.‘,”(“ e A ;“"'Ik)a~ b
(*2tutevnal factovs such as ..-(.“.Iv ".'7\l|fl,{!()y|. re H‘

{verin g

501 |
"phain about- Vegutyeynent d1 V"‘”"‘["""""F‘V'u” 4

WD, porils
’0‘ (i | , i
| eraciive view punls Tndivecd views point
10"{'\"‘(‘(vr Vie LD Points s
“\O" ln‘f(a(l c‘
| i
| &% ‘~fay ANThA o

' ol rm Ve Fon

reolle, iorig T ReS: e people
: ¥ itk e Systery

| i »

o diterm b, Cusiomnrey ond bank C

" f' “tr(Vit "Llhi,, ‘,(""_’ ' ’ " (‘l’lfhl"\Jf f'a\ ‘ﬂ ’)ﬂ‘(
.,({_‘Jb‘ 1 rvle vacl waidb Lhe (' - he ((llﬂ'f‘h(l)r;lul
o‘ i o,\"n‘ﬂr» /TVH““ but fo

| DU"\)J!'\ Vitwo 't-,.rrfg . 7}(',/
"‘*' ;T\!'\jo.‘(t ".(_S.,S_f' [o

'J ltl : 1(r1-w{t\1d\ tha
“ dhe ATen

ave odbhey fys'(frru

‘ﬂ)}’K‘ AvYe et

It lwence the YeYuiverne, ¢
v "ty

-

r(r\rna " cha Ta

" ’
Lot g) ﬂ("‘,u.’(f!‘ﬁfh‘.f
ave 'nffh '

cleyisis
YisStie g o (’un}hva.‘n;

ll"(’ < Y "". '." co

"n{t
Yy Y ‘
LLI TN Trounicadli

i

) l‘losf.J lrv{-tvv.‘ta._» -
"s(l cL. s tion

) Opery devvie vy

Scernavip :. ot ik
= A C((na(lo
”r‘.\'.c b hevtegg

wheve Sdake |

4o yeal 1
*f-_f;;l.da.xls o L l

. Anurag

Am‘ ENGINEERING COLLEGE

(An Autonomous Institution)

Course File

Department of Information Technology

LA T g
B BRI E

fhae %‘:me:t indevackion a. Setnavio may tnelude |

\ '“"\9*. - Sustern : i bes SR IE S AT g

R Svhe N\ and ey anpect when Senarty
SR

(TEERR B rormal How o} tvents
omen e Tt SN 40 ot andhow 4t (s handled

‘1"‘1‘‘ "“lm M AN cal qothey Lhe funclional e
Enbhne hy '3k 1 reremad,

[0 R & obsevvady
"i‘a&h&. clal and o¥fanizational R:l:::::x‘“‘ Ahat can be und,

.l - s .'\{ >
4 R AT o e B
4 .' 3 A

v
.

4. Anurag

A/a‘ ENGINEERING COLLEGE

nnnnnnnnnnnnnnnnnnnnnnnn

Course File

Department of Information Technology

conwu ‘ . . T . 4. .
pwv-'ch. the necessavy fvarme work dov to ged the

k};uch* €. ‘

h “lo‘ ' h‘
aiqn clasity

Ahs{ux(l-on L
AL e haqhest level of o abstroction

evms

AL \obou \eve] o} akitvackion a move detailed descvipton of H_\c fol

b vided 5
Dag:. aksiiac{\on ~ eollecdion of dala thad descxibes o Jat OLJct

v - ofen ' ol d ooy - doov 15 data oby ect :

- Dala absivackion $ov douy \..mu\d trcorpats o e of atdvibules tha
‘descvibed the doov (29 doos type Swaing ydivecd orening mechanis m Q"C
?o.{{eu\s (= T4 provides t{m(lm/‘-a descsiption Uvat gnablet a A"Q.
,&_o *m;w’s':"\g, the 2ollowaing 7

.4'.:».’ {-Cn&?c_ o the Curyent wovk

») “M"\CJ tl«. patien ¢ be veuwsed

o Solukion it Slated in boavd

NPT

\.adrh {h\t’mlxna the vwodules alyo ’n,pg

Tﬂchﬂ |
¢.. 3} tn#Q‘Mm. N-lmq 3“‘3‘1'3“ the Wt{s e

4. Anurag
ATS\A
nomous Institution)

(An Auto

Course File

Department of Information Technology

fas The itrdent of tnformakien hiding /s 4o hide 4he dedails of dada

Stymuctuvey omd Froceduve processing behind o rmodule 1rdevface .
AvENnidec tave - | ‘ | | 2
* Soldivsove aschidecluvye $
Sedlbesa-re armd Ahe vooys
iﬁ(—t’v‘«h‘ fox o Sygate ey

-
& SAsw Chave o ovgonizoadion o) £+
! beiw Cominec fioy, o

| [Tty ot duagn
I A good Sgslen daign

les i Sueh o voeveb haod A
c‘\nnit » S-&t\-&t&u‘fi A
Si2e awnd Cowwlevdx‘

u”c&é The ovevall S ycluwe (3
v swabich that Sevacdaive Pvovides té:t:w

YO L COre o el Cromdicles)

Lvakav- % lo eiganize Lthe p o
tave Basy Lo develop and lales FAEEIE
 yowedbhode helgp ".(V"ON sf to dea |l wareh 4
Y Progvarns

To desige o System~ dlheve oo pPossikle. approachey

A Top - dowon appsoack. ('0

2 . Botltor up aperoach
|

!

!

Scanned by PDF Sc.

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

Course File

Anurag

ANURAG
Aﬁ‘ ENGINEERING COLLEGE
(An Autonomous Institution)

Department of Information Technology

/e ol O BAMNGS V(N SRRSO A R

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

>
oy %
WY

4. Anurag

Am‘ ENGINEERING COLLEGE
(An Autonom

ous Institution)

Course File

Department of Information Technology

4. Anurag

Am‘ ENGINEERING COLLEGE
(An Autonomous

Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(An Autonom

to ous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

PV)Y EncineERING cOLLEGE
(An Autonomous

Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

. Ay
el
W AL

4. Anurag

Am‘ ENGINEERING COLLEGE
(An Autonom

ous Institution)

Course File

Department of Information Technology

4. Anurag

Am‘ ENGINEERING COLLEGE
nom

(An Autonomous Institution)

Course File

Department of Information Technology

AY: 2023-24 Il B.Tech Il Sem Software Engineering

Course File

A

(An Autono

Department of Information Technology

. —g—— e -

@! M Prexess oo saonts 16 kel

4. Anurag

Ia‘ ENGINEERING COLLEGE
A m

ous Institu

tion)

 Pew fPecillic.

| tnses tn Tnishunbe—f pappec g T
2 cas. Lt S —t1 |
— - T SRS R T ey '
et —— e ——— g e S T .- P =
— S —— - e— —— —— —— P = —-;-—— - - —
= ;-11‘4\:7.: OV ‘7. \ ﬁ * N
= 2 F;j [y =i
G %y LIS !
2 — |
3 - — i !
— - 2 \'ﬂw" A i 12V |

3

-

Course File

4. Anurag
AS\A

(An Auto us Institution)

Department of Information Technology

| I enanasaz

b EApes

- THE enay e —yw £~ -f i : =
' .Engineering Engineers

=endy Skiveel Padet Sodef e Ti Che teowies
hwm-gua,%f roks Lo puyen poaakes e i

é

é

|
i
P

|

|

e 3 s Aoy (.
a Oy ~ &~
’ e s | ET g . A
4 i ;;.v~‘:fj YR ‘;_*,y\.\ o 3 ’
T s v B X . {
E o T . }.‘ “ %
: S e ~

. Anurag

A/a‘ |ENGINEERING COLLEGE
(An A

ooooooooooo

Course File

Department of Information Technology

RRTI =T ChL L 2 e

_ ANTORAG —— S

rccm.\:u"“‘n st B q
Dotdars v e _ i! .

dama

BL3i

TN IA"u:“l.' R i

¥ AN

i

v

3

3

b

) -
)

J

fl

—_— . v e s e R e b 2]

| r\grv|hdamurt. J :
fats o =LY = —"cu:sn-"\ﬁlo
=% e AR, simoogasad ‘:

Course File

Department of Information Technology

- -

’_‘,'!"' ’s' - et Al e

AS\

4. Anurag

(An Autonomous Institu

—— A —————

e ——

A ENGINEERING COLLEGE

tion)

4. Anurag

Am‘ ENGINEERING COLLEGE

(An Autonomous Institution)

Course File

Department of Information Technology

. Anurag

Am‘ ENGINEERING COLLEGE

(An Autonomous Institution)

Course File

Department of Information Technology

RS S,

. .'3’ el fs;émv

‘0" A.“‘"'L

/M S Gl B BRGSOV (K SA SIS AR

Course File

. Anurag

Aﬁ‘ ENGINEERING COLLEGE

nnnnnnnnnnnnnnnnnnnnnnnn

Department of Information Technology

0 T
ANURAG ENGINEERING COLLEGE
WW
(Approvest by mmmmmnmwwnmmhw

& Kodad

- | wonchetbo. e, pololype mole) _stell 4

/tém&/,ol\m&.__ B TN PR Y
= vkt . oS5

Jood 3k W [Feoproeg S .mfkvlcn.”ona-’ !."‘(P'OM’ WY

%m(’k whreh = al- ta ~Bbe Sgflemn
1 ar ’\h}o ‘O %‘;wlﬁ ConAdoc el

~% s Leved frraples ,anmpk-w ana/ a4
Jyevel 5 ,.m.ﬁga @ vel 83 PelPoe Ao b ~ga |
.?v&m& 0 ke ahd OU&.\ a2 mn"\&-hgw wogee) ,

. ":uq enl

@ o Y m'lh La.tv R ﬂvod.sr

,__’-___amﬂ-.m__sg.&.uuw‘ ote _proproy L |
FIE Progescd oo Ok alyn <Rk

e €

SO;W(’\'\ f"«_,

BV S

ove. §roceRs Emmg Englassc. .ahda_*___

_ﬂbcfo..-mc.,-.!n . -

i I SR S éﬁ!'ﬁﬁﬁmf’% < .al\.’mL |

e

4. Anurag

Am‘ ENGINEERING COLLEGE
(An Autonom

ous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(An Autonom

to ous Institution)

Course File

Department of Information Technology

. Anurag

Course File
P¥ L)Y W ENGINEERING COLLEGE
(An Autonomous Institution)

Department of Information Technology

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

W Anurag

Course File
A/ak

uuuuuuuuuuuuuuuuuuuuuuuu

Department of Information Technology

A &

¥ ANURAG ENGINEERING COLLEGE

g .ymuc-n»ouﬁ

[Courme: 3ctture €091 20¥00 | | sgnannoipsor wih ot 3pfofy 31

3_{1)]_c_L |Ll‘ n 10' QJ_‘I___J W.{W Vili\’ e Sk e

— T O.No. and Marks Awarded mu‘n_n_em__ T W v)
1 2|3 |4 s |86| 7|89 100 1 i e .—l_-;:;” — l,_ &n__]
L0 5t 0 O W e 3 ol L1 Marks | Chued: L= o=

= wmmm» -

| pmoject Ot SSAess
;"\#"EW“" s ANURAG —— — —

L“,";:’I volapie \e,qm\cmcn‘
and the Tequile

ey

A L R T T T e ————

. aelmmem._ 'Lf; Q /og:l:urd (o) pasticular peveloped of

- \ ent
the sofusore hos a delieveses fxom the Soffuxke Deve\ Opn

RIET RS T

1

People ! culture-

wsgm,M',wmlmanQIHEEFS y

4. Anurag

Aﬁ\‘ ENGINEERING COLLEGE
(An Autonom

ous Institution)

Course File

Department of Information Technology

4. Anurag

Am‘ ENGINEERING COLLEGE
(An Autonomous

Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

Course File

N Anurag

AS\A

nnnnnnnnnnnnnnnnnnnnnnn

Department of Information Technology

A ANURAG ENGINEERING (.OLLEGE

B . (An Autonomous Institution)
éﬁ‘ (Approved by AICTE. New Deini, Affilated 1o JNTUN, mmnmma.m
—— N "v'* EEh _wwam, Kodad, Suryapet (Dist), Telangana.
—e Program |, YEAR SEMESTER MID EXAMINATION
s _:f:f:‘:__l_ MTYech. | Mo ‘1LB\-~1¢4~1[W-sew J L_,""““‘ hs«j
MALL IGRET MO [W %18 Branch or Specialization l;c_c
dlafc< " Ininlclalole]
[——— e A e el o D ‘m v
 Cowse: S][W = S’Js‘w-. ——
| . J | Signature of iInvigitator with date s\v‘"
Q.NG. and Marks Awarded | ["'ﬁ",” ey 2
lal2]3faTs]se 7”";'“[[”9110['_1{-” - eia b — —_]
. 1 - |
ISERT TS OB T [yt | e[%o] s [\ |
= Saart Writing From Herw) -
PART -

Ipaf 23

Risy f\!t\j‘a t'\orﬂ

Eisk '*Wa,ﬂaac.vne-n‘\:

T the 2SSk m‘anajtﬂ'\t'\\

T the =ick ‘W\\J) Qq
L Y " omes in
Avealivy A E e ANhe

e 't By
Pyvace S8 W:;Q“\é =
: AN T RS ,mhf%qmem'\. willl follow

Lol _,_\kf B So\Wwe ke Reks

- time

= o £ g -3
iﬁ(Nk W\(ﬁ‘jaﬁﬁh{"d 'kin ﬁt\\ ‘Vnar\QJq-m'q\-t
_voﬂt.iéfi“éit%f'“\ﬁf T P S T
e e f}qv\’)et\m TRAThen - w\\\ Casrev e § tg
1€ mone] pegye c s TBedali Ay _-hxg L
e gommtleting ' | I Q«e:a »

ajects|

| dna mc‘wa:

Sa\ade s

A A AL AN

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(An Autonom

to ous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(An Autonom

to ous Institution)

Course File

Department of Information Technology

4. Anurag

Aﬁ\‘ ENGINEERING COLLEGE
(An Autonomous

Institution)

Course File

Department of Information Technology

4. Anurag

Am‘ ENGINEERING COLLEGE
(An Autonom

ous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(An Autonom

to ous Institution)

Course File

Department of Information Technology

4. Anurag

Aﬁ\‘ ENGINEERING COLLEGE
(An Autonom

ous Institution)

Course File

Department of Information Technology

4. Anurag

Aﬁ\‘ ENGINEERING COLLEGE
(An Autonomous

Institution)

Course File

Department of Information Technology

4. Anurag

A{.\A ENGINEERING COLLEGE
(An Autonom

ous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(An Autonom

to ous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(An Autonom

to ous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

4. Anurag

ATS\A
(

An Autonomous Institution)

Course File

Department of Information Technology

. Anurag

Course File
P¥ L)Y W ENGINEERING COLLEGE
(An Autonomous Institution)

Department of Information Technology

MATERIAL

AY: 2023-24 I11 B.Tech Il Sem Software Engineering

SOFTWARE ENGINEERING

UNIT-I
INTRODUCTION TO SOFTWARE ENGINEERING

Softwar e Softwareis
Ingtructions (computer programs) that provide desired features, function, and performance, when
executed
Data structures that enable the programs to adequatel y manipulate information,
Documents that describe the operation and use of the programs.

Char acteristics of Softwar e:
Softwareis developed or engineered; it isnot manufactured in the classical sense.
Software does not —wear outl
Although the industry is moving toward component-based construction, most software continues
to be custom built.

Softwar e Engineering:
The systematic, disciplined quantifiable approach to the devel opment, operation and maintenance
of software; that is, the application of engineering to software.
The study of approachesasin (1)

EVOLVING ROLE OF SOFTWARE:
Software takes dual role. It is both a product and a vehicle for delivering a product.

Asaproduct: It deliversthe computing potential embodied by computer Hardware or by a
network of computers.

As a vehicle: It is information transformer-producing, managing, acquiring, modifying,
displaying, or transmitting information that can be as simple as single bit or as complex as a multimedia
presentation. Software deliversthe most important product of our time-information.

It transforms personal data

It manages business information to enhance competitiveness
It provides a gateway to worldwide information networks

It provides the means for acquiring information

Therole of computer software has undergone significant change over a span of little more than 50 years
Dramatic Improvements in hardware performance
Vast increasesin memory and storage capacity
A wide variety of exotic input and output options

1970s and 1980s:

Osborne characterized a —new industrial revolutionl
Toffler called the advent of microelectronics part of -the third wave of changel in human history
Naishitt predicted the transformation from an industrial society to an -information society!l
Feigenbaum and McCorduck suggested that information and knowledge would be thefocal
point for power in the twenty-first century
Soll argued that the -electronic communityll created by networks and software was the key to
knowl edge interchange throughout theworld
1990s began:
Toffier described a -power shiftl in which old power structures disintegrate as computers and
software lead to a-democratization of knowledgel.
Yourdon worried that U.S companies might lose their competitive edge in software related
business and predicted -the decline and fall of the American programmerll.
Hammer and Champy argued that information technol ogies were to play a pivotal role inthe
-reengineering of the corporationl.
Mid-1990s:
The pervasiveness of computers and software spawned arash of books by neo-luddites.

Page 1

SOFTWARE ENGINEERING

Later 1990s:
Yourdon reevaluated the prospects of the software professional and suggested -the rise
and resurrectionl of the American programmer.
The impact of the Y 2K -time bombll was at the end of 20" century

2000s progressed:
Johnson discussed the power of -emergencell a phenomenon that explains what happens when
interconnections among relatively simple entities result in a system that —self-organizesto form
more intelligent, more adaptive behaviorl.
Yourdon revisited the tragic events of 9/11 to discuss the continuing impact of global terrorism
on the IT community
Wolfram presented a treatise on a —new kind of sciencel that posits a unifying theory
based primarily on sophisticated software simulations
Daconta and his colleagues discussed the evolution of -the semantic webl.

Today a huge software industry has become a dominant factor in the economies of the industrialized world.

THE CHANGING NATURE OF SOFTWARE:

The 7 broad categories of computer software present continuing challenges for software engineers:
System software
Application software
Engineering/scientific software
Embedded software
Product-line software
Web-applications
Artificial intelligence software.

System softwar e; System software is a collection of programs written to serviceother
programs. The systems software is characterized by

heavy interaction with computer hardware
heavy usage by multiple users

concurrent operation that requires scheduling, resource sharing, and sophisticated
process management

complex data structures
multiple externa interfaces
E.g. compilers, editors and file management utilities.

Application softwar e:
Application software consists of standal one programs that solve a specific business need.
It facilitates business operations or management/technical decision making.
It isused to control business functionsin rea-time
E.g. point-of-sale transaction processing, real-time manufacturing process control.

Engineering/Scientific softwar e: Engineering and scientific applicationsrange

-from astronomy to volcanology
- from automotive stress analysis to space shuttle orbital dynamics
- from molecular biology to automated manufacturing
E.g. computer aided design, system simulation and other interactive applications.
Embedded software:
Embedded software resides within a product or system and is used to implement
and control features and functions for the end-user and for the system itsdlf.
It can perform limited and esoteric functions or provide significant function and

control capability.

Page 2

SOFTWARE ENGINEERING

E.g. Digital functions in automobile, dashboard displays, braking systems etc.

Product-line software: Designed to provide a specific capability for use by many different
customers, product-line software can focus on a limited and esoteric market place or address mass
consumer markets

E.g. Word processing, spreadsheets, computer graphics, multimedia, entertainment,
database management, personal and business financial applications

Web-applications: WebApps are evolving into sophigticated computing environments that not
only provide standalone features, computing functions, and content to the end user, but also are
integrated with corporate databases and business applications.

Artificial intelligence software: Al software makes use of nonnumerical algorithms to solve
complex problems that are not amenable to computation or straightforward analysis. Application
within this area includes robotics, expert systems, pattern recognition, artificial neural networks,
theorem proving, and game playing.

The following are the new challenges on the horizon:

Ubiquitous computing
Netsour cing

Open sour ce

The -new economyll

Ubiquitous computing: The challenge for software engineers will be to develop systems and application
software that will allow small devices, personal computers and enterprise system to communicate across
vast networks.

Net sourcing: The challenge for software engineers is to architect smple and sophigticated applications
that provide benefit to targeted end-user market worldwide.

Open Source: The challenge for software engineers is to build source that is self descriptive but more
importantly to develop techniques that will enable both cusomers and devel opers to know what changes
have been made and how those changes manifest themselves within the software.

The -new economyll: The challenge for software engineers is to build applications that will facilitate mass
communi cation and mass product distribution.

SOFTWARE MYTHS

Beliefs about software and the process used to build it- can be traced to the earliest days of computing
myths have anumber of attributes that have made them insidious.

Management myths. Manages with software responsihility, like managersin most disciplines, are often
under pressure to maintain budgets, keep schedules from slipping, and improve quality.

Myth: We already have a book that‘s full of standards and procedures for building software - Wont that
provide my people with everything they need to know?

Reality: The book of standards may very well exist but, isit used? Are software practitioners aware of its
existence? Does it reflect modern software engineering practice?

Myth: If we get behind schedule, we can add more programmers and catch up.

Reality:

Software development is not a mechanistic process like manufacturing. As new people are added,

people who were working must spend time educating the new comers, thereby reducing the amount of time
spend on productive development effort. People can be added but only in a planned and well coordinated

manner.

Myth: If | decide to outsource the software project to athird party, | can just rdax and let that firm built it.

Reality:

If an organization does not understand how to manage and control software projects internally, it

will invariably struggle when it outsources software projects.

Page 3

SOFTWARE ENGINEERING

Customer myths: The customer believes myths about software because software managers and
practitioners do little to correct misnformation. Myths lead to false expectations and ultimately,
dissatisfaction with the devel oper.

Myth: A general statement of objectives is sufficient to begin with writing programs - we can fill in the
detailslater.

Reality: Although a comprehensive and stable statement of requirements is not always possible, an
ambiguous statement of objectivesis recipe for disaster.

Myth: Project requirements continually change, but change can be easily accommodated because software
isflexible.

Reality: Itistruethat software requirements change, but the impact of change varies with the time at which
it is introduced and change can cause upheaval that requires additional resources and major design
maodification.

Practitioner’s myths: Myths that are still believed by software practitioners: during the early days of
software, programming was viewed as an art from old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our jobs are done.

Reality: Someone once said that the sooner you begin writing code, the longer it‘ll take you to get done.
Industry data indicate that between 60 and 80 percent of all effort expended on software will be expended
after it isdelivered to the customer for thefirst time.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes many elements.
Documentation provides guidance for software support.

Myth: software engineering will make us create voluminous and unnecessary documentation and will
invariably slows down.

Reality: software engineering is not about creating documents. It isabout creating quality. Better quality
leads to reduced rework. And reduced rework resultsin faster delivery times.
A GENERIC VIEW OF PROCESS

SOFTWARE ENGINEERING - A LAYERED TECHNOLOGY:

e
(Tools D

— g
e = s
— e S
3 Methods)
oy —
g T veeueay o £
— =i __'\
' Process D)
‘ ‘__/
—— —ceill
S . e
'd A quality focus N
-~ S
—— p—

Softwar e Engineering L ayers

Page 4

SOFTWARE ENGINEERING

Software engineering is a layered technol ogy. Any engineering approach must rest on an organizational
commitment to quality. The bedrock that supports softwar e engineering is a quality focus.

The foundation for software engineering is the process layer. Software engineering process is the glue that
holds the technology layers. Process defines a framework that must be established for effective
delivery of softwar e engineering technology.

The software forms the basis for management control of software projects and establishesthe context
in which

- technica methods are applied,

- work products are produced,

- milestones are established,

- quality isensured,

- And changeis properly managed.

Softwar e engineering methodsrely on a set of basic principlesthat govern area of the technology and
include modeling activities.

Methods encompass a broad array of tasks that include
communication,
requirements analysis,
design modeling,
program construction,
Testing and support.

Softwar e engineering tools provide automated or semi automated support for the process and the
methods. When tools are integrated so that information created by one tool can be used by ancther, a
system for the support of software devel opment, called computer-ai ded software engineering, isestablished.

A PROCESS FRAMEWORK:
Software process must be established for effective delivery of software engineering technology. . L
A process framework establishes the foundation for a complete software process by identifying a
small nulmber of framework activities that are applicable to all software projects, regardless of théir size
or complexity.
The process %;amework encompasses a set of umbrella activities that are applicable across the entire
software process.
Each framework activity is populated by a st of software engineering actions

Each softwar e engineering action is represented by a number of different task sets- each a collection
of_lgtware engineering work tasks, related work products, quality assurance points, and project
milestones.

In brief
"A process defines who is doing what, when, and how to reach a certain goal ."

A Process Framework

establishes the foundation for a compl ete software process
identifies a small number of framework activities
appliesto all s/'w projects, regardless of size/complexity.
also, set of umbrella activities
applicable across entire s'w process.

Each framework activity has
set of s’'w engineering actions.

Each gw engineering action (e.g., design) has

Page 5

SOFTWARE ENGINEERING

- collection of related tasks (called task sets):

Software process

work tasks
work products (deliver ables)
quality assurance points

project milestones.

Process framework

Umbrella activities

Framework activity #1
Software engineering action

Task sets

Software engineering action

—

Work tasks
Work products

Quiality assurance points
Project milestones

Work tasks

ask sets
Work products

Quiality assurance points
Project milestones

Framework activity #n

Software engineering action

Task sets

Software engineering action

Work tasks
Work products

Quiality assurance points
Project milestones

Work tasks

Work products

Quality assurance points
Project milestones

Page 6

SOFTWARE ENGINEERING

Generic Process Framework: It isapplicable to the vast majority of software projects
Communication activity
Planning activity
Modedling activity
andysis action
requirements gathering work task
elaboration work task
negotiation work task
specification work task
validation work task
design action
data design work task
architectura design work task
interface design work task
component-level design work task
Construction activity
Deployment activity

Communication: This framework activity involves heavy communication and collaboration with
the customer and encompasses requirements gathering and other related activities.

Planning: This activity establishes a plan for the software engineering work that follows. It
describes the technical tasks to be conducted, the risks that are likely, the resources that will be
required, the work products to be produced, and a work schedule.

Modeling: This activity encompasses the creation of models that allow the developer and
customer to better understand software requirements and the design that will achieve those
requirements. The modeling activity is composed of 2 software engineering actions- analysis and
design.

Analysis encompasses a set of work tasks.

Design encompasses work tasksthat create a design model.

Construction: Thisactivity combines core generation and the testing that isrequired to
uncover the errorsin the code.

Deployment: The software is delivered to the customer who eval uates the delivered product and
provides feedback based on the evolution.

These 5 generic framework activities can be used during the development of small programs, the
creation of large web applications, and for the engineering of large, complex computer-based systems.

The following are the set of Umbr ella Activities.

Softwar e prgject tracking and control — allows the software team to assess progress against
the project plan and take necessary action to maintain schedule.

Risk M anagement - assesses risks that may effect the outcome of the project or the quality of
the product.

Softwar e Quality Assurance - defines and conducts the activities required to ensure
software quality.

Formal Technical Reviews - assesses software engineering work productsin an effort to
uncover and remove errors before they are propagated to the next action or activity.

Page 7

SOFTWARE ENGINEERING

M easur ement - define and collects process, project and product measures that assist the team in
ddivering software that needs customer‘s needs, can be used in conjunction with all other
framework and umbrella activities.

Softwar e configur ation management - manages the effects of change throughout the software
process.

Reusability management - defines criteria for work product reuse and establishes mechanisms
to achieve reusable components.

Work Product preparation and production - encompasses the activities required to create
work products such as model's, document, logs, formsand ligs.

Intelligent application of any software process model must recognize that adaption is essential for success

but process models do differ fundamentally in:
The overall flow of activities and tasks and the interdependenci es among activities and tasks.

The degree through which work tasks are defined within each frame work activity.

The degree through which work products are identified and required.

The manner which quality assurance activities are applied.

The manner in which project tracking and control activities are applied.

The overall degree of the detailed and rigor with which the process is described.

The degree through which the customer and other stekeholders are involved with the project.
Thelevel of autonomy given to the software project team.

The degree to which team organization and roles are prescribed.

THE CAPABILITY MATURITY MODEL INTEGRATION (CMMI):

The CMMI represents a process meta-mode! in two different ways:

As a continuous model

As a staged model.
Each process areaisformally assessed against specific goals and practices and israted according to the
following capability levels.
Level 0: Incomplete. The process areais either not performed or does not achieve al goals and objectives
defined by CMMI for level 1 capability.

Level 1: Performed. All of the specific goals of the process area have been satisfied. Work tasks required
to produce defined work products are being conducted.

Level 2: Managed. All level 1 criteria have been satisfied. In addition, all work associated with the process
area conforms to an organizationally defined policy; al people doing the work have access to adequate
resources to get the job done; stakeholders are actively involved in the process area as required; all work
tasks and work products are —monitored, controlled, and reviewed;

Level 3: Defined. All level 2 criteria have been achieved. In addition, the process is —tailored from the
organizations set of standard processes according to the organizations tailoring guidelines, and contributes
and work products, measures and other process-improvement information to the organizational process
assetsl.

Level 4: Quantitatively managed. All level 3 criteria have been achieved. In addition, the process areais

controlled and improved using measurement and quantitative assessment.lQuantitative objectives for
quality and process performance are established and used ascriteriain managing the processl|

Page 8

Level 5: Optimized. All level 4 criteria have been achieved. In addition, the process area is adapted and
optimized using quantitative means to meet changing customer needs and to continually improve the
efficacy of the process area under considerationl

Page 9

SOFTWARE ENGINEERING

The CMMI defines each process area in terms of —specific goalsl and the -specific practicesl required to
achieve these goals. Specific practices refine agoal into a set of process-rel ated activities.

The specific goals (SG) and the associated specific practices(SP) defined for project planning are

SG 1 Egtablish estimates
SP 1.1 Egtimate the scope of the project
SP 1.2 Egablish estimates of work product and task attributes
SP 1.3 Define project life cycle
SP 1.4 Determine estimates of effort and cost
SG 2 Develop aProject Plan
SP 2.1 Egablish the budget and schedule
SP 2.2 Identify project risks
SP 2.3 Plan for data management
SP 2.4 Plan for needed knowledge and skills
SP 2.5 Plan stakeholder involvement
SP 2.6 Egablish the project plan
SG 3 Obtain commitment to the plan
SP 3.1 Review plans that affect the project
SP 3.2 Reconcile work and resource levels
SP 3.3 Obtain plan commitment

In addition to specific goals and practices, the CMMI also defines a set of five generic goals and related
practices for each process area. Each of the five generic goals corresponds to one of the five capability
levels. Hence to achieve a particular capability level, the generic goal for that level and the generic practices
that correspond to that goal must be achieved. To illustrate, the generic goals (GG) and practices (GP) for
the project planning process areaare

GG 1 Achieve specific goals
GP 1.1 Perform base practices
GG 2 Ingtitutionalize a managed pr ocess
GP 2.1 Establish and organizationa policy
GP 2.2 Plan the process
GP 2.3 Provide resources
GP 2.4 Assignresponsibility
GP 2.5 Train people
GP 2.6 Manage configurations
GP 2.7 Identify and involve relevant stakeholders
GP 2.8 Monitor and control the process
GP 2.9 Objectively evaluate adherence
GP 2.10 Review status with higher level management
GG 3 Ingtitutionalize a defined process
GP 3.1 Egtablish a defined process
GP 3.2 Collect improvement information

GG 4 Ingtitutionalize a quantitatively managed process
GP 4.1 Egtablish quantitative objectives for the process

Page 10

SOFTWARE ENGINEERING

GP 4.2 Stabilize sub process performance

GG 5 Ingtitutionalize and optimizing process
GP 5.1 Ensure continuous process improvement
GP 5.2 Correct root causes of problems

PROCESS PATTERNS
The software process can be defined as a collection patterns that define a set of activities, actions,
work tasks, work products and/or related behaviors required to devel op computer software.
A process pattern provides us with a template- a consistent method for describing an important
characteristic of the software process. A pattern might be used to describe a complete process and a task
within a framework activity.

Pattern Name: The pattern is given a meaningful name that describes its function within the
software process.

Intent: The objective of the pattern is described briefly.

Type: The pattern type is specified. There are threetypes
Task patter ns define a software engineering action or work task that is part of the process and
relevant to successful software engineering practice. Example: Requirement Gathering

Stage Patter ns define a framework activity for the process. This pattern incorporates
multiple task patternsthat are relevant to the stage.

Example: Communication

Phase patter ns define the sequence of framework activities that occur with the process,
even when the overall flow of activitiesisiterative in nature.

Example: Spiral model or prototyping.

Initial Context: The conditions under which the pattern applies are described prior to theinitiation of
the pattern, we ask

What organizational or team related activities have aready occurred.

What isthe entry state for the process

What software engineering information or project information aready exists

Problem: The problem to be solved by the pattern is described.
Solution: Theimplementation of the pattern is described.

This section describes how theinitial state of the process is modified as a consequence the initiation of
the pattern.

It also describes how software engineering information or project information that is available before
the initiation of the pattern istransformed as a consegquence of the successful execution of the pattern

Resulting Context: The conditions that will result once the pattern has been successfully implemented
are described. Upon completion of the pattern we ask

Wheat organizational or team-related activities must have occurred

What isthe exit state for the process

What software engineering information or project information has been devel oped?

Known Uses: The specific instances in which the pattern is applicable are indicated

Process patterns provide and effective mechanism for describing any software process.

The patterns enabl e a software engineering organization to develop ahierarchical process description

that begins at ahigh-leve of abstraction.

Once process pattern have been developed, they can be reused for the definition of process variants-that is,
a customized process model can be defined by a software team using the pattern as building blocks for the
process models.

Page 11

SOFTWARE ENGINEERING

PROCESS ASSESSMENT

The existence of a software process is no guarantee that software will be delivered on time, that it
will meet the customer*‘s needs, or that it will exhibit the technical characteristics that will lead to long-term
quality characterigtics. In addition, the process itself should be assessed to be essential to ensure that it
meets a set of basic process criteria that have been shown to be essential for a successful software

engineering.
,(__ Software :
) T .
/’
Identifies / ‘} Identifies capabilities and risk
/ Software
/ Lead
/ / \
Software Capability
Motivat

A Number of different approaches to software process assessment have been proposed over the past few
decades.

Standards CMM| Assessment Method for Process Improvement (SCAMPI) provides a five step
process assessment model that incorporates initiating, diagnosing, establishing, acting & learning. The
SCAMPI method uses the SEI CMMI asthe basis for assessment.

CMM Based Appraisal for Internal Process Improvement (CBA IPI) provides a diagnostic technique
for assessing the relative maturity of a software organization, using the SEI CMM as the basis for the
assessment.

SPICE (ISO/IEC15504) standard defines a set of requirements for software process assessments. The
intent of the standard is to assist organizations in developing an objective evaluation of the efficacy of any
defined software process.

I SO 9001:2000 for Software is a generic standard that applies to any organization that wants to improve
the overall quality of the products, system, or services that it provides. Therefore, the standard is directly
applicabl e to software organizations & companies.

PERSONAL AND TEAM PROCESSMODELS:

The best software process is one that is close to the people who will be doing the work.Each software
engineer would create a process that best fits his or her needs, and at the same time meets the broader needs
of the team and the organization. Alternatively, the team itself would create its own process, and at the
same time meet the narrower needs of individuals and the broader needs of the organization.

Per sonal softwar e process (PSP)
The personal software process (PSP) emphasizes personal measurement of both the work product that is
produced and the resultant quality of the work product.

Page 12

SOFTWARE ENGINEERING

The PSP process model defines five framework activities: planning, high-level design, high level design
review, development, and postmortem.

Planning: This activity isolates requirements and, base on these devel ops both size and resource estimates.
In addition, a defect estimate is made. All metrics are recorded on worksheets or templates. Finaly,
development tasks areidentified and a project schedule is created.

High level design: External specifications for each component to be constructed are developed and a
component design is created. Prototypes are built when uncertainty exists. All issues are recorded and
tracked.

High level design review: Formal verification methods are applied to uncover errorsin the design. Metrics
are maintained for all important tasks and work results.

Development: The component level design isrefined and reviewed. Code is generated, reviewed,
compiled, and tested. Metrics are maintained for all important task and work results.

Postmortem: Using the measures and metrics coll ected the effectiveness of the processis determined.
M easures and metrics should provide guidance for modifying the process to improve its effectiveness.

PSP stresses the need for each software engineer to identify errors early and, asimportant, to
understand the types of errorsthat heislikely to make.

PSP represents a disciplined, metrics-based approach to software engineering.

Team software process (T SP): The goal of TSP isto build a-self-directed project team that organizes
itself to produce high-quality software. The following are the objectives for TSP:
Build sdlf-directed teams that plan and track their work, establish goal's, and own their
processes and plans. These can be pure software teams or integrated product teams(1PT) of 3 to
about 20 engineers.
Show managers how to coach and motivate their teams and how to help them sustain
peak performance.
Accelerate software process improvement by making CMM leve 5 behavior normal and expected.
Provide improvement guidance to high-maturity organizations.
Facilitate university teaching of industria -grade team skills.
self-directed team defines
roles and responsibilities for each team member
tracks quantitative project data
identifies ateam process that is appropriate for theproject
a strategy for implementing the process
defineslocal standardsthat are applicable to the teams software engineeringwork;
continually assesses risk and reactsto it
Tracks, manages, and reports project status.
TSP defines the following framework activities: launch, high-level design, implementation, integration and
test, and postmortem.
TSP makes use of awide variety of scripts, forms, and standards that serve to guide team membersin
their work.
Scripts define specific process activities and other more detailed work functionsthat are part of theteam
process.
Each project is -launchedll using a sequence of tasks.

The following launch script isrecommended
Review project objectives with management and agree on and document team goals
Establish team roles
Define the teams devel opment process
Make a quality plan and set quality targets
Plan for the needed support facilities

Page 13

SOFTWARE ENGINEERING

PROCESSMODELS

Prescriptive process models define a set of activities, actions, tasks, milestones, and work products that
arerequired to engineer high-quality software. These process models are not perfect, but they do provide a
useful roadmap for software engineering work.

A prescriptive process model popul ates a process framework with explicit task sets for software
engineering actions.

THE WATERFALL MODEL:

The waterfall model, sometimes called the classic life cycle, suggests a systematic sequential approach to
software development that begins with customer specification of requirements and progresses through
planning, modeling, construction, and deployment.

Context: Used when requirements are reasonably well understood.
Advantage:

It can serve asa useful process mode in situations where requirements are fixed and work isto
proceed to completein alinear manner.

Communication
i (Hagect T LM oM I-Plannino
reguiement gatherd sTnAimg Modeling
FChatiling
Macking

maNas SIS ST e
desnn (Deployment
dehvnry
suppait
feedback

The problems that are sometimes encountered when the waterfall model is applied are:
Real projects rarely follow the sequentia flow that the model proposes. Although the linear model
can accommodate iteration, it does so indirectly. As aresult, changes can cause confusion as the
project team proceeds.

It is often difficult for the customer to state all requirements explicitly. The waterfall model
requires this and has difficulty accommodating the natural uncertainty that exist at the beginning
of many projects.

The customer must have patience. A working version of the programs will not be available until
late in the project time-span. If a major blunder is undetected then it can be disastrous until the
program is reviewed.

INCREMENTAL PROCESSMODELS:

The incremental model
The RAD mode

THE INCREMENTAL MODEL:

Context: Incremental development is particularly useful when gaffing is unavailable for a
complete implementation by the business deadline that has been established for the project. Early
increments can be implemented with fewer people. If the core product is well received, additiona staff can
be added to implement the next increment. In addition, increments can be planned to manage technical
risks.

Page 14

SOFTWARE ENGINEERING

increment # n

increment # 2 a

deliv ery of
o ry

increment#1 b 2ndincrement

software functionallty zand features

' r. o Facers deliv ery of
rrrrrrr 1st increment

project calendar time

Theincremental model combines elements of the waterfall model applied in an iterative fashion.

The incremental model delivers a series of releases called increments that provide progressively
more functionality for the customer as each increment isddivered.

When an incremental model is used, the first increment is often a core product. That is, basic
requirements are addressed. The core product is used by the customer. As a result, a plan is

developed for the next increment.

The plan addresses the modification of the core product to better meet the needs of the customer
and the delivery of additional features and functionality.

This process is repeated following the delivery of each increment, until the complete product is
produced.

For example, word-processing software developed using the incrementa paradigm might ddiver basic file
management editing, and document production functionsin the first increment; more sophisticated editing,
and document production capabilities in the second increment; spelling and grammar checking in the third
increment; and advanced page layout capability in the fourth increment.

Difference: The incrementa process moded, like prototyping and other evolutionary approaches,
is iterative in nature. But unlike prototyping, the incremental model focuses on delivery of an operational
product with each increment

THE RAD MODEL:

Rapid Application Development (RAD) is an incremental software process mode that
emphasizes a short development cycle. The RAD model is a -high-speedll adaption of the waterfall model,
in which rapid development is achieved by using a component base construction approach.

Context: If requirements are well understood and project scope is constrained, the RAD process
enables a devel opment team to create a -fully functional systemll within avery short time period.

Page 15

SOFTWARE ENGINEERING

Team #n
Modeling
business m odeling
process m odeing
Construction
Team #2 ity
Communicat ion = generation
—p Mo d eling
business m odeling
dat am odeling
- process m odeling
Planning
—H- De ployme nt
Team #1 int egrat ion
deliv ery

feedback

Mode ling
business modeling

dat a modeling
process modeling

Const ruct ion
component reuse
aut omat ic code
generat ion
testing

60-90days

The RAD approach maps into the generic framework activities.
Communication works to understand the business problem and the information characterigtics that
the software must accommodate.

Planning is essential because multiple software teamsworks in parald on different system functions.

Modeling encompasses three major phases- business modeling, data modeling and process modeling- and
establishes design representation that serve existing software components and the application of
automatic code generation.

Deployment establishes a basis for subsequent
iterations. The RAD approach has drawbacks:

For large, but scalable projects, RAD requires sufficient human resources to create the right number
of RAD teams.

If developers and customers are not committed to the rapid-fire activities necessary to complete the
system in a much abbreviated time frame, RAD projects will fail

If a system cannot be properly modularized, building the components necessary for RAD will
be problematic

If high performanceis an issue, and performance isto be achieved through tuning the interfacesto
system components, the RAD approach may not work; and

RAD may not be appropriate when technical risks arehigh.

EVOLUTIONARY PROCESSMODELS:

Evolutionary process models produce with each iteration produce an increasingly more complete version
of the software with every iteration.

Evolutionary models are iterative. They are characterized in amanner that enabl es software engineers
to devel op increasingly more complete versions of the software.

Page 16

SOFTWARE ENGINEERING

PROTOTYPING:

Prototyping is more commonly used as a technique that can be implemented within the context of
anyone of the process model.

The prototyping paradigm begins with communication. The software engineer and customer meet and
define the overall objectives for the software, identify whatever requirements are known, and outline
areas where further definition is mandatory.

Prototyping iteration is planned quickly and modeling occurs. The quick design leadsto the construction
of a prototype. The prototype is deployed and then evaluated by the customer/user.

Iteration occurs as the prototype is tuned to satisfy the needs of the customer, whil e at the same
time enabling the devel oper to better understand what needs to be done.

Quiick p lan

Com municat ion

Modeling
Quick d esign

Deployment
Delivery

& Fe e dback

Const ruct ion
of
prot ot ype

Context:
If a customer defines a set of general objectives for software, but does not identify detailed
input, processing, or output requirements, in such situation prototyping paradigm is best approach.
If adeveloper may be unsure of the efficiency of an agorithm, the adaptability of an
operating system then he can go for this prototyping method.

Advantages:

The prototyping paradigm assists the software engineer and the customer to better understand what
isto be built when requirements are fuzzy.

The prototype serves as a mechanism for identifying software requirements. If a working prototype
is built, the developer attempts to make use of existing program fragments or appliestools.

Prototyping can be problematic for the following reasons:
The customer sees what appears to be a working version of the software, unaware that the
prototype is held together —with chewing gum and baling wirel, unaware that in the rush to get it
working we haven‘t considered overall software quality or long-term maintainability. When
informed that the product must be rebuilt so that high-levels of quality can be maintained, the
customer cries foul and demands that -a few fixesl be applied to make the prototype a working
product. Too often, software development relents.
The developer often makes implementation compromises in order to get a prototype working
quickly. An inappropriate operating system or programming language may be used smply
because it is available and known; an inefficient a gorithm may be implemented ssimply to

Page 17

SOFTWARE ENGINEERING

demonstrate capability. After a time, the developer may become comfortable with these choices
and forget al the reasons why they were inappropriate. The less-than-ideal choice has now
become an integral part of the system.

THE SPIRAL MODEL

The spiral model, originally proposed by Boehm, is an evolutionary software process model that

couples the iterative nature of prototyping with the controlled and systematic aspects of the

waterfall modd.

The spird modd can be adapted to apply throughout the entire life cycle of an application, from

concept devel opment to maintenance.
Using the spiral model, software is developed in a series of evolutionary releases. During early
iterations, the release might be a paper model or prototype. During later iterations, increasingly
morecompl ete versions of the engineered system are

planning
estimation

scheduling
risk analysis

. modeling
‘\. analysis
| design
|

deployment e _
delivery construction
code
feedback
produced. ot

Anchor point milestones- a combination of work products and conditions that are attained along
the path of the spiral- are noted for each evolutionary pass.

The firgt circuit around the spiral might result in the development of product specification;
subsequent passes around the spiral might be used to develop a prototype and then progressively
more sophisticated versions of the software.

Each pass through the planning region results in adjustmentsto the project plan. Cost and schedule
are adjusted based on feedback derived from the customer after delivery. In addition, the project
manager adjusts the planned number of iterations required to compl ete the software.

It maintains the systematic stepwise approach suggested by the classic life cycle but incorporatesit
into an iterative framework that morerealistically reflects the real world.

The first circuit around the spiral mifqht represent a -concept development projectll which starts at
the core of the spira and continues for multiple iterations until concept devel opment is compl ete.

If the concept isto be developed into an actual product, the process proceeds outward on the spiral and a
-new product development projectl commences.

Later, acircuit around the spiral might be used to represent a-product enhancement project.ll In essence,
the spiral, when characterized in this way, remains operative until the softwareisretired.

Context: The spiral model can be adopted to apply throughout the entire life cycle of an application, from
concept devel opment to maintenance.

Advantages.
It provides the potential for rapid development of increasingly more complete versions of the software.

Page 18

SOFTWARE ENGINEERING

The spiral model is arealistic approach to the development of large-scale systems and software. The spiral
model uses prototyping as arisk reduction mechanism but, more importantly enables the devel oper to apply
the prototyping approach at any stage in the evolution of the product.

Draw Backs:

The spiral model is not a panacea. It may be difficult to convince customers that the evolutionary approach
is controllable. It demands considerable risk assessment expertise and relies on this expertise for success. If
amajor risk is not uncovered and managed, problems will undoubtedly occur.

THE CONCURRENT DEVELOPMENT MODEL:
The concurrent devel opment model, sometimes called concurrent engineering, can be represented
schematically as a series of framework activities, software engineering actions and tasks, and their

associated states.
"
none
Nk

Modeling act ivit y
7

=

represents the $tate
of a software enjgineering
activity or task

Under
development

Await ing

changes

4

Under review

Baselined

Under

revision

. =

The activity modeling may be in anyone of the states noted at any given time. Similarly, other
activities or tasks can be represented in an analogous manner. All activities exist concurrently but residein
different states.

Any of the activities of a project may bein aparticular state at any one time
under development
awaiting changes
under revision
under review

In aproject the communication activity has completed its firs iteration and exigs in the awaiting
changes state. The modeling activity which existed in the none state while initial communication was

Page 19

SOFTWARE ENGINEERING

Page 20

completed, now makes a transtion into the under development state. If, however, the customer indicates
that changes in requirements must be made, the modeling activity moves from the under development
stateinto the awaiting changes date.

The concurrent process model defines a series of events that will trigger transitions from gate to
state for each of the software engineering activities, actions, or tasks.

The event analysis model correction which will trigger the analysis action from the done state into
the awaiting changes state.

Context: The concurrent model is often more appropriate for system engineering projects where different
engineering teams are involved.

Advantages:
The concurrent process model is applicableto al types of software development and provides an
accurate picture of the current state of a project.

It defines anetwork of activitiesrather than each activity, action, or task on the network exists
simultaneoudly with other activities, action and tasks.

A FINAL COMMENT ON EVOLUTIONARY PROCESSES:
The concerns of evolutionary software processes are:
The first concern is that prototyping poses a problem to project planning because of the uncertain number of
cycles required to construct the product.

Second, evolutionary software process do not establish the maximum speed of the evolution. If the
evhol ution occurs too fast, without a period of relaxation, it is certain that the process will fall into
chaos.

Third, software processes should be focused on flexibility and extensibility rather than on high quality.

THE UNIFIED PROCESS:

The unified process (UP) is an attempt to draw on the best features and characteristics of conventional
software process moddls, but characterize them in a way that implements many of the best principles of
agile software devel opment.

The Unified process recognizes the importance of customer communication and streamlined methods for
describing the customer ‘s view of a system. It emphasizes the important role of software architecture and
—helps the architect focus on the right goals, such as understandability, reliance to future changes, and
reuse-. If suggests a process flow that is iterative and incremental, providing the evolutionary feel that is
essential in modern software devel opment.

A BRIEF HISTORY:

During the 1980s and into early 1990s, object-oriented (OO) methods and programming languages
gained a widespread audience throughout the software engineering community. A wide variety of object-
oriented analysis (OOA) and design (OOD) methods were proposed during the same time period.

During the early 1990s James Rumbaugh, Grady Booch, and |val Jacobsom began working on a
-Unified methodl that would combine the best features of each of OOD & OOA. The result was UML- a
unified modding language that contains a robust notation fot the modeling and development of OO
systems.

By 1997, UML became an industry standard for object-oriented software development. At the
same time, the Rationa Corporation and other vendors developed automated tools to support UML
methods.

Over the next few years, Jacobson, Rumbugh, and Booch developed the Unified process, a
framework for object-oriented software engineering using UML. Today, the Unified process and UML are
widely used on OO projects of al kinds. The iterative, incremental model proposed by the UP can and
should be adapted to meet specific project needs.

Page 20

PHASES OF THE UNIFIED PROCESS:

The inception phase of the UP encompasses both customer communication and planning
activities. By collaborating with the customer and end-users, business requirements for the software are
identified, arough architecture for the system is proposed and a plan for the iterative, incremental nature of
the ensuing project is devel oped.

The elaboration phase encompasses the customer communication and modeling activities of the
generic process model. Elaboration refines and expands the preliminary use-cases that were devel oped as
part of the inception phase and expands the architectural representation to include five different views of
the software- the use-case model, the analysis model, the design model, the implementation model, and the
deployment model.

The congtruction phase of the UP is identical to the construction activity defined for the generic
software process. Using the architectural modd as input, the construction phase develops or acquires the
software components that will make each use-case operational for end-users. To accomplish this, analysis
and design models that were started during the elaboration phase are completed to reflect the final version
of the software increment.

The transition phase of the UP encompasses the latter stages of the generic construction activity
and the first part of the generic deployment activity. Software given to end-users for beta testing, and user
feedback reports both defects and necessary changes.

The production phase of the UP coincides with the deployment activity of the genericprocess.
During this phase, the on-going use of the software is monitored, support for the operating environment
is provided, and defect reports and requests for changes are submitted and eval uated.

Elaborat ion

Incept ion \

/ construc tion

Release t ransit ion

soft ware increment
\

\

production

A software engineering workflow is distributed across al UP phases. In the context of UP, a workflow is
analogous to a task set. That is, a workflow identifies the tasks required to accomplish an important
software engineering action and the work products that are produced as a consequence of successfully
completing the tasks.

UNIFIED PROCESSWORK PRODUCTS:

During the inception phase, the intent is to establish an overall —visionll for the project,
identify a set of business requirements,
make a business case for the software, and
define project and business risks that may represent athreat to success.

Page 21

The most important work product produced during the inception is the use-case modell-a collection of

use-cases that describe how outside actors interact with the system and gain value from it. The use-case
model is a collection of software features and functions by describing a set of preconditions, a flow of
events and a set of post-conditionsfor the interaction that is depicted.

The use-case model is refined and elaborated as each UP phase is conducted and serves as an

important input for the creation of subsequent work products. During the inception phase only 10 to 20
percent of the use-case model is completed. After elaboration, between 80 to 90 percent of the model has
been created.

The elaboration phase produces a set of work products that elaborate requirements and produce
and architectural description and a preliminary design. The UP analysis model is the work product that
is developed as a consequence of this activity. The classes and analysis packages defined as part of the
anadysis model arerefined further into a design model which identifies design classes, subsystems, and
the interfaces between subsystems. Both the analysis and design models expand and refine an evolving
representation of software architecture. In addition the elaboration phase revisits risks and the project
plan to ensure that each remainsvalid.

The construction phase produces an implementation model that trandates design classes into
software components into the physical computing environment. Finally, a test model describes tests
that are used to ensure that use cases are properly reflected in the software that has been constructed.

The transition phase delivers the software increment and assesses work products that are
produced as end-users work with the software. Feedback from beta testing and qualitative requests for
changeis produced at thistime.

Inception phase

Vision document
Init ial use-case model
Init ial project glossary
Init ial business case
Init ial risk assessment .
Project plan,

phases and it erat ions.
Business model,

if necessary .
One or more prot ot ypes

Elaboration phase

Use-case model

Supplement ary requirement s

including non-funct ional
Analy sis model
Soft ware archit ect
ure Description.
Execut able archit ect
ural prot ot ype.
Preliminary design
model Revised risk list
Project plan including
it erat ion plan adapt
ed workflows milest
ones
t echnical work product s
Preliminary user manual

Construct ion phase

Design model
Soft ware component s
Int egrat ed soft ware
increment
Test plan and
procedure Test cases
Support document at ion
user manuals
inst allation manuals
descript ion of current
increment

Transition phase

Deliv ered soft ware

increment Bet a t est report s

General user feedback

Page 22

UNIT-11

SOFTWARE REQUIREMENTS

Software requirements are necessary
To introduce the concepts of user and system requirements

To describe functional and non-functional requirements
To explain how software requirements may be organised in aregquirements document

What isarequirement?
Therequirements for the system are the description of the services provided by the system and
its operational constraints

It may range from ahigh-level abstract gatement of a service or of a system constraint to
a detailed mathematical functional specification.

Thisisinevitable as requirements may serve a dua function

0 May bethe basisfor abid for a contract - therefore must be open to interpretation;
0 May bethe basis for the contract itself - therefore must be defined indetail;

Both these statements may be called requirements
Requirements engineering:
The process of finding out, analysing documenting and checking these services and constraintsis
called requirement engineering.
The process of establishing the services that the customer requires from a system and the
constraints under which it operates and is devel oped.

The requirements themsel ves are the descriptions of the system services and constraints that are
generated during the requirements engineering process.

Requirements abstraction (Davis):

If a company wishes to let a contract for a large software devel opment project, it must defineits
needs in a sufficiently abstract way that a solution is not pre-defined. The requirements must be
written so that several contractors can bid for the contract, offering, perhaps, different ways of
meeting the client organisation’s needs. Once a contract has been awarded, the contractor must
write a system definition for the client in more detail so that the client understands and can
validate what the software will do. Both of these documents may be called the requirements
document for the system.”

Types of requirement:
User requirements

Statementsin natural language plus diagrams of the services the system provides and
its operational congtraints. Written for customers.

System requirements

A structured document setting out detailed descriptions of the system‘s functions,
services and operational constraints. Defines what should be implemented so may be
part of a contract between client and contractor.

Definitions and specifications:

User Requirement Definition:
The software must provide the means of representing and accessing externa files created by other
tools.

Page 23

System Requirement specification:
The user should be provided with facilities to define the type of external files.

Each external file type may have an associated tool which may be applied to thefile.
Each external file type may be represented as a specific icon on the user‘s display.

Facilities should be provided for the icon representing an external file type to be defined by
the user.

When an user selects an icon representing an external file, the effect of that selection is to apply the
tool associated with the type of the external file to the file represented by the selectedicon.

Requirementsreaders:

Client managers
Uses xn end-users
» w
requirements Contracior
System architects
System end-usars
Systemn o Client engineess
requirements Systom anchitects
. Client enginoers (perhaps)
e > System architecs
Software developers
Functional and non-functional

requirements. Functional requirements

Statements of services the system should provide how the system should react
to particular inputs and how the system should behave in particular situations.

Non-functional requirements

Constraints on the services or functions offered by the system such astiming
congtraints, constraints on the devel opment process, standards, etc.

Domain requirements

Requirementsthat come from the application domain of the system and that
reflect characteristics of that domain.

1.1) FUNCTIONAL REQUIREMENTS:
Describe functionality or system services.

Depend on the type of software, expected users and the type of system where the software
isused.

Functiona user requirements may be high-level statements of what the system should do
but functional system requirements should describe the system services in detail.

The functiona requirementsfor The LIBSY S system:
A library system that provides a single interface to a number of databases of articlesin
different libraries.
Users can search for, download and print these articles for personal studly.
Examples of functional reguirements
The user shall be able to search either al of theinitial set of databases or select a subset fromit.

The system shall provide appropriate viewers for the user to read documentsin the
document store.

Page 24

Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be able
to copy to the account‘s permanent storage area.

Requirements imprecision
Problems arise when requirements are not precisely stated.
Ambiguous requirements may be interpreted in different ways by devel opersand users.
Consider theterm _appropriate viewers*

0 User intention - special purpose viewer for each different document type;

0 Developer interpretation - Provide a text viewer that shows the contents of the
document.

Requirements completeness and consistency:
In principle, requirements should be both complete and consistent.
Complete
They should include descriptions of all facilities
required. Congdstent
There should be no conflicts or contradictions in the descriptions of the system facilities. In
practice, it isimpossible to produce a compl ete and consistent requirementsdocument.

NON-FUNCTIONAL REQUIREMENTS

These define system properties and constraints e.g. reliability, response time and
storage requirements. Constraints are |/O device capability, system representations, etc.

Process requirements may al so be specified mandating a particular CASE system,
programming language or development method.

Non-functional requirements may be more critical than functional requirements. If these are
not met, the system isuseless.

1.2) Non-functional requirement types.

Non-functional
requirements
Product Organisational Extermnal
requirements requirements requirements
Efficiency Reliability Portability Interoperability Ethical
Usability L Implementation Standards
requirements requirements requirements requirements requirements
|
Performance Space Privacy Safaty
requirements requirements requirements requirements

Non-functional requirements:
Product requirements

Page 25

Requirements which specify that the delivered product must behave in aparticular
way e.g. execution speed, reliability, etc.

Eg:Theuser interface for LIBSY S shall be implemented as smple HTML without
frames or Java appl ets.

Organisational requirements

Requirements which are a conseguence of organisational policies and procedures
e.g. process standards used, implementation requirements, etc.

Eg: The system development process and deliverable documents shall conform to
the process and deliverables defined in XY ZCo-SP-STAN-95.

External requirements

Requirements which arise from factors which are external to the system and its
devel opment process e.g. interoperability requirements, legislative requirements, etc.

Eg: The system shall not disclose any personal information about customers apart
from their name and reference number to the operators of the system.

Goalsand requirements:

Non-functional requirements may be very difficult to state precisely and imprecise
requirements may be difficult to verify.

Goa
A generd intention of the user such as ease of use.

The system should be easy to use by experienced controllers and should be organised in
such away that user errors are minimised.

Verifiable non-functional requirement
A statement using some measure that can be objectively tested.

Experienced controllers shall be able to use dl the system functions after a total of two hours
training. After this training, the average number of errors made by experienced users shall
not exceed two per day.

Goals are helpful to developers as they convey the intentions of the system users.

Requir ements measur es.

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size M Bytes

Number of ROM chips

Ease of use Training time
Number of help frames

Rdiability Mean timeto failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Timetorestart after failure
Percentage of events causing failure
Probability of data corruption on failure

Page 26

Portahility Percentage of target dependent statements
Number of target systems

Requirements inter action:
Conflicts between different non-functiona requirements are common in complex systems.

Spacecraft system

Tomi n;rgése weight, the number of separate chipsin the system should be
minimi .
To minimise power consumption, lower power chips should be used.

However, using low power chips may mean that more chips have to be used. Which isthe
most critica requirement?

A common problem with non-functional requirementsisthat they can be difficult to verify. Users
or customers often state these requirements as general goal's such as ease of use, the ability of the system
to recover from failure or rapid user response. These vague goal s cause problems for system devel opers as
they leave scope for interpretation and subsequent dispute once the system is delivered.

1.3) DOMAIN REQUIREMENTS
Derived from the application domain and describe system characteristics and features that
reflect thedomain. i .]) o)
Domain reguirements be new functional requirements, constraints on existing requirements
or define specific computations.

If domain requirements are not satisfied, the system may beunworkable.

Library system domain requirements:
There shall be a sandard user interface to al databases which shall be based on the
Z39.50 standard.
Because of copyright restrictions, some documents must be deleted immediately on arrival.
Depending on the user‘s requirements, these documents will either be printed locally on the
system server for manually forwarding to the user or routed to a network printer.

Domain requirements problems
Under standability
Requirements are expressed in the language of the application domain;
Thisis often not understood by software engineers devel oping the system.
Implicitness
Domain specialists understand the area so well that they do not think of making
the domain requirements explicit.

USER REQUIREMENTS
Should describe functional and non-functional requirements in such a way that they
are understandable by system users who don‘t have detailed technical knowledge.

User requirements are defined using natural language, tables and diagrams as these can
be understood by all users.

Problemswith natural language
Lack of clarity
Precision is difficult without making the document difficult to
read. Requirements confusion
Functiona and non-functiona requirements tend to be mixed-
up. Requirements amal gamation
Severa different requirements may be expressed together.

Requirement problems
Database requirements includes both conceptua and detailed information

» Describes the concept of afinancial accounting system that isto be includedin
LIBSYS,

Page 27

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

However, it also includes the detail that managers can configure this system - thisis
unnecessary at this level.

Grid requirement mixes three different kinds of requirement
Conceptual functional requirement (the need for a grid);
Non-functional requirement (grid units);
Non-functional Ul requirement (grid switching).
Structured presentation
Guidelinesfor writing requirements
Invent a standard format and use it for all requirements.

Use language in a consistent way. Use shdl for mandatory requirements, should for
desirable requirements.

Use text highlighting to identify key parts of the requirement.
Avoid the use of computer jargon.

SYSTEM REQUIREMENTS
More detailed specifications of system functions, services and constraints than user requirements.

They are intended to be a basis for designing the system.
They may be incorporated into the system contract.
System requirements may be defined or illustrated using system models

Requirements and design
In principle, requirements should state what the system should do and the design should
describe how it does this.
In practice, requirements and design areinseparable
A system architecture may be designed to structure the requirements,
The system may inter-operate with other systems that generate design requirements;
The use of a specific design may be a domain requirement.
Problemswith NL (natural language) specification
Ambiguity
Thereaders and writers of the requirement must interpret the sasmewords in the
same way. NL is naturally ambiguous so thisis very difficult.
Over-flexibility
The same thing may be said in anumber of different waysin the
specification. Lack of modularisation
NL structures are inadeguate to structure system requirements.

Alternativesto NL specification:

Notation Description

Structured natural ~ This approach depends on defining standard forms or templates to express the
language requirements specification.

Design description This approach uses a language like a programming language but with more abstract

languages features to specify the requirements by defining an operational mode of the system.
Thisapproach is not now widely used athough it can be useful for interface
specifications.

Page 28

SOFTWARE

ENGINEERING — Material

SOFTWARE ENGINEERING

Graphica A graphical language, supplemented by text annotationsis used to define the functional

notations requirements for the system. An early example of such a graphical language was SADT.
Now, use-case descriptions and sequence diagrams are commonly used .

Mathematical These are notations based on mathematical concepts such as finite-state machines or

specifications sets. These unambiguous specifications reduce the arguments between customer and

contractor about system functionality. However, most customers don‘t understand
formal specifications and are reluctant to accept it as a system contract.

3.1) Structured language specifications

The freedom of the requirements writer islimited by a predefined templatefor requirements.
All requirements are written in a standard way.

The terminology used in the description may be limited.

The advantageis that the most of the expressiveness of natural language is maintained but

a degree of uniformity isimposed on the specification.

Form-based specifications

Tabular

Definition of the function or entity.

Description of inputs and where they come from.
Description of outputs and where they go to.
Indication of other entitiesrequired.

Pre and post conditions (if appropriate).

The side effects (if any) of the function.

specification
Used to supplement natural language.
Particularly useful when you have to define anumber of possible alternative courses of action.

Graphical models

Graphical models are most useful when you need to show how state changes or where you need
to describe a sequence of actions.

Sequence diagrams

These show the sequence of events that take place during some user interaction with asystem.
Y ou read them from top to bottom to see the order of the actions that takeplace.
Cash withdrawal from an ATM

Validate card;

Handle request;

Complete transaction.

Page 29

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

Sequence diagram of ATM withdrawal

C e

Card number
Card OK :l
3 PIN request
PIN |
Option menu essssmReEEEEs | Validate card
< lon>>
— Withdraw request Balance request
5 Balance
. S S S e e i Handle request
i " | Debit (amount)
soxeopion> | | _oebitresponse

:‘ Card —
Cudxumved’ __________ _1 m '
Cash removed
Ll Reosigt o

System requir ement specification using a standard form:
Function
Description
Inputs
Source
Outputs
Destination
Action
Requires
Pre-condition
Post-condition
Side-effects

When a standard form is used for specifying functional requirements, the following information should be
included:

Description of the function or entity being specified

Description of itsinputs and where these come from

Description of its outputs and where these go to

Indication of what other entities are used

Description of the action to be taken

If afunctional approach isused, a pre-condition setting out what must be true before the function

is called and a post-condition specifying what istrue after the function iscalled

Page 30

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

Description of the side effects of the operation.

INTERFACE SPECIFICATION

Most systems must operate with other systems and the operating interfaces must be specified

as part of therequirements.

Three types of interface may have to be defined
Procedural interfaces where existing programs or sub-systems offer arange of services
that are accessed by calling interface procedures. These interfaces are sometimes called
Applicatin Programming Interfaces (APIs)
Data structuresthat are exchanged that are passed from one sub-system to
another. Graphical data models are the best notations for this type of description
Data representations that have been established for an existing sub-system

Formal notations are an effective technique for interface specification.

5) THE SOFTWARE REQUIREMENTSDOCUMENT:

The reguirements document is the official statement of what is required of the system devel opers.
Should include both a definition of user requirements and a specification of the

system requirements.) o
ItisNOT adesign document. Asfar aspossible, it should set of WHAT the system should
do rather than HOW it should do it

User s of arequirements document:

Spedfy the requirements and
read them to check that they
m' meet their needs. They
spedify changes to the
requirements
Use the requirements
nagers » document to plan a bid for
- the system and to plan the
system development process
System Use the requirements to
engineers % understand what system is to
be developed
System test Use the requirements to
engineers . develop validation tests for
the system
System Use the requirements to help
. understand the system and
oo ™ the relationships between its
parts

Page 31

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

| EEE requirements standar d defines a generic sructure for arequirements document that must
be instantiated for each specific system.
Introduction.
Purpose of the requirements document
Scope of the project
Definitions, acronyms and abbreviations
References
Overview of the remainder of the document
General description.
Product perspective
Product functions
User characteristics
General constraints
Assumptions and dependencies
Specific requirements cover functional, non-functional and interface requirements. The
requirements may document external interfaces, describe system functionality and performance,
specify logical database requirements, design constraints, emergent system properties and
quality characterigtics.
Appendices.
Index.

REQUIREMENTS ENGINEERING PROCESSES
The goal of requirements engineering process isto create and maintain a system reguirements document.
The overdl process includes four high-level requirement engineering sub-processes. These are
concerned with

Assessing whether the system isuseful to the business(feasibility study)

Discovering requirements(elicitation and analysis)

Converting these requirementsinto some standard form(specification)

Checking that the requirements actualy define the system that the customer wants(validation) The
process of managing the changesin the requirementsis called requirement management.

The requirements engineering process

Requirements
Feasibility » elicgtation and
study analysis -
| o Requirements
specification
Feasibility w &quirements
report validation
System
models
User and system
requirements
‘ \J
> Requirements

> document

Requirements engineering:

Page 32

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

The alternative perspective on the requirements engineering process presents the process as a three-stage
activity where the activities are organized as an iterative process around a spiral. The amount of time and
effort devoted to each activity in iteration depends on the stage of the overall process and the type of system
being developed. Early in the process, most effort will be spent on understanding high-level business and
non-functional requirements and the user requirements. Later in the process, in the outer rings of the spiral,
more effort will be devoted to system requirements engineering and system modeling.

This spiral model accommaodates approaches to development in which the requirements are developed to
different levels of detail. The number of iterations around the spiral can vary, so the spiral can be exited
after some or all of the user requirements have been dlicited.

Some people consider requirements engineering to be the process of applying a structured analysis method
such as object-oriented analysis. This involves analyzing the system and developing a set of graphical
system models, such as use-case models, that then serve as a system specification. The set of models
describes the behavior of the system and are annotated with additional information describing, for example,
itsrequired performance or reliability.

Spiral model of requirements engineering processes

System requirements
document

1) FEASIBILITY STUDIES
A feasbility study decides whether or not the proposed system is worthwhile. The input to the
feasibility study is a set of preliminary business requirements, an outline description of the system and how
the system is intended to support business processes. The results of the feasibility study should be a report
that recommends whether or not it worth carrying on with the requirements engineering and system
devel opment process.
A short focused study that checks
— If the system contributes to organisational objectives;
— If the system can be engineered usng current technology and within budget;

Page 33

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

— If the system can be integrated with other systems that are used.

Feasibility study implementation:
A feasibility study involves information assessment, information collection and report writing.
Questions for peoplein the organisation
— What if the system wasn‘t implemented?
— What are current process problems?
— How will the proposed system help?
— What will be theintegration problems?
— Isnew technology needed? What skills?
— What facilities must be supported by the proposed system?

In a feasibility study, you may consult information sources such as the managers of the
departments where the system will be used, software engineers who are familiar with the type of system
that is proposed, technology experts and end-users of the system. They should try to complete a feasibility
study in two or three weeks.

Once you have the information, you write the feasibility study report. You should make a
recommendation about whether or not the system development should continue. In the report, you may
propose changes to the scope, budget and schedule of the system and suggest further high-level
requirements for the system.

2) REQUIREMENT ELICITATION AND ANALYSIS:
The requirement engineering processis requirements dicitation and analyss.
Sometimes called requirements elicitation or requirements discovery.
Involves technical staff working with customersto find out about the application domain,
the services that the system should provide and the system‘s operational constraints.
May involve end-users, managers, engineers involved in maintenance, domain experts,
trade unions, etc. These are called stakeholders.
Problems of requirements analysis
Stakeholders don‘t know what they really want.
Stakehol ders express requirementsin their own terms.
Different stakeholders may have conflicting requirements.
Organisational and political factors may influence the system requirements.
The requirements change during the analysis process. New stakeholders may emerge and
the business environment change.

Therequirements spiral

Haulimirecas Kot @ e
lawsiNcatioer erel Porttication ersd
organisation Teegootl azaoen
- ——a mantaor

documarntation

Page 34

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

Process activities
Requirements discovery
— Interacting with stakeholders to discover their requirements. Domain regquirements are
also discovered at this stage.
Requirements classification and organisation
— Groups related requirements and organises them into coherent clusters.
Prioritisation and negotiation
— Prioritising requirements and resolving requirementsconflicts.
Requirements documentation
— Requirements are documented and input into the next round of the spiral.
The process cycle starts with regquirements discovery and ends with requirements documentation. The
analyst‘s understanding of the requirements improves with each round of the cycle.
Requirements classification and organization is primarily concerned with identifying overlapping
requirements from different stakeholders and grouping related requirements. The most common way of
grouping requirements is to use amodel of the system architecture to identify subsystems and to associate
requirements with each sub-system.
Inevitably, stakeholders have different views on the importance and priority of requirements, and
sometimes these view conflict. During the process, you should organize regular stakeholder negotiations so
that compromises can be reached.
In the requirement documenting stage, the reguirements that have been dicited are documented in such a
way that they can be used to help with further requirements discovery.

2.1) REQUIREMENTS DISCOVERY:
Requirement discovery is the process of gathering information about the proposed and existing
systems and distilling the user and system requirements from this information.
Sources of information include documentation, system stakehol ders and the specifications
of similar systems.
They interact with stakehol ders through interview and observation and may use scenarios
and prototypes to help with the requirements discovery.
Stakeholders range from system end-users through managers and external stakeholders such as
regulators who certify the acceptability of the system.
For example, system stakeholder for abank ATM include
Bank customers
Representatives of other banks
Bank managers
Counter gaff
Database administrators
Security managers
Marketing department
Hardware and software maintenance engineers
Banking regulators
Requirements sources(stakeholders, domain, systems) can al be represented as system viewpoints, where
each viewpoints, where each viewpoint presents a sub-set of the requirements for the system.

Viewpaoints:
Viewpoints are away of structuring the requirementsto represent the perspectives of different
stakeholders. Stakeholders may be classified under different viewpoints.
This multi-perspective analysis is important as there is no single correct way to anayse system
requirements.
Types of viewpoint:
Interactor viewpoints
— People or other systems that interact directly with the system. These viewpoints provide
detailed system requirements covering the system features and interfaces. In an ATM, the
customer ‘s and the account database are interactor VPs.
Indirect viewpoints

Page 35

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

— Stakeholders who do not use the system themselves but who influence the requirements.
These viewpoints are more likely to provide higher-level organisation regquirements and
constraints. In an ATM, management and security staff are indirect viewpoints.

Domain viewpoints

— Domain characteristics and constraints that influence the requirements. These viewpoints
normally provide domain constraints that apply to the system. In an ATM, an example
would be standards for inter-bank communications.

Typically, these viewpoints provide different types of requirements.

Viewpoint identification:
I dentify viewpointsusing
— Providers and receivers of system services,
— Systemsthat interact directly with the system being specified,;
— Regulations and standards;
— Sources of business and non-functional requirements.
— Engineers who have to develop and maintain the system;
— Marketing and other business viewpoints.

)
] = =

Library Adticle Library U | Cassiication

LIBSY Sviewpoint hierarchy

] I N =

I nterviewing
In formal or informal interviewing, the RE team puts questions to stakehol ders about the system that they
use and the system to be devel oped.
There are two types of interview
Closed interviews where a pre-defined set of questions are answered.
Open interviews where thereis no pre-defined agenda and arange of issues are explored
with stakeholders.
Interviewsin practice:
Normally amix of closed and open-ended interviewing.
Interviews are good for getting an overall understanding of what stakeholders do and how
they might interact with the system.
Interviews are not good for understanding domain requirements
— Requirements engineers cannot understand specific domain terminol ogy;

Page 36

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

— Some domain knowledge is so familiar that people find it hard to articulate or think that it
isn‘t worth articulating.

Effectiveinterviewers:
Interviewers should be open-minded, willing to listen to stakeholders and should not have pre-
conceived ideas about the requirements.
They should prompt the interviewee with a question or a proposal and should not simply expect
them to respond to a question such as _what do you want‘.
Scenarios:
Scenarios are redl -life examples of how a system can be used.
They should include
— A description of the starting situation;
A description of thenormal flow of events;
A description of what can go wrong;
Information about other concurrent activities;
A description of the state when the scenario finishes.

Use cases
Use-cases are a scenario based technique in the UML which identify the actorsin an interaction and
which describe the interaction itsdlf.
A st of use cases should describe al possible interactions with the system.
Sequence diagrams may be used to add detail to use-cases by showing the sequence of
event processing in the system.

T~

Article printing use-case:

Article printing
LIBSY S use cases.

= X

User administration / Library

Staff
%

Supplier Catalogue services

Page 37

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

Article printing sequence:

m Form Workspace m
User
request
Y
comphli
reeurm
o
daliver 2
i article OK
p!
|) T
[efoerr o conlmn
e Hr‘
delete

Social and organisational factors
Software systems are used in asocial and organisationa context. This can influence or even
dominate the system requirements.

Social and organisational factors are not a single viewpoint but are influences on all viewpaints.
Good analysts must be sensitive to these factors but currently no systematic way to tackle
their anaysis.

2.2) ETHNOGRAPHY:
A social scientists spends a considerabl e time observing and analysing how people actually work.
People do not have to explain or articulate their work.
Social and organisational factors of importance may be observed.

Ethnographic studies have shown that work is usually richer and more complex than suggested
by simple system models.

Focused ethnogr aphy:
Deveoped in aproject studying the air traffic control process
Combines ethnography with prototyping
Prototype devel opment results in unanswered questions which focus the ethnographic analysis.
The problem with ethnography isthat it studies existing practices which may have some historical
basis which isno longer relevant.

Ethnography and prototyping

Ethnographic ' Debriefing
analysis meetings

Focused
ethnography
‘\ l Prototype
evaluation
Generic system System "
protoyping

development

Page 38

SOFTWARE ENGINEERING

SOFTWARE ENGINEERING

Scope of ethnography:
Requirements that are derived from the way that people actually work rather than the way |
which process definitions suggest that they ought to work.
Requirements that are derived from cooperation and awareness of other people‘s activities.

REQUIREMENTSVALIDATION
Concerned with demonstrating that the requirements define the system that the customer
redly wants.
Requirements error costs are high so validation is very important
— Fixing arequirements error after delivery may cost up to 100 timesthe cost of fixing an
implementation error.

Requirements checking:
Validity: Does the system provide the functions which best support the customer*s needs?
Consistency: Arethere any requirements conflicts?
Completeness: Areal functionsrequired by the customer included?
Realism: Can the requirements be implemented given avail able budget and technol ogy
Verifiability: Can the requirements be checked?

Requirements validation techniques
Requirements reviews
— Systematic manual analysis of therequirements.
Prototyping
— Using an executable model of the system to check requirements. Covered in Chapter 17.
Test-case generation
— Developing tests for requirementsto check testability.

Requirementsreviews.
Regular reviews should be held while the requirements definition is being formulated.
Both client and contractor staff should beinvolved in reviews.
Reviews may be formal (with completed documents) or informa. Good communications
between devel opers, customers and users can resolve problems at an early stage.

Review checks:
Verifiability: Isthe requirement redistically testable?
Comprehensibility: Isthe requirement properly understood?
Traceability: Isthe origin of the requirement clearly stated?
Adaptability: Can the requirement be changed without a large impact on other requirements?

REQUIREMENTSMANAGEMENT
Requirements management is the process of managing changing requirements during
the requirements engineering process and system devel opment.
Reguirements are inevitably incompl ete and inconsi stent
— New requirements emerge during the process as business needs change and a better
understanding of the system is devel oped,;
— Different viewpoints have different requirements and these are often contradictory.

Requirements change
The priority of requirements from different viewpoints changes during the devel opment process.
System customers may specify regquirements from a business perspective that conflict with end-
user requirements.
The business and technical environment of the system changes during its devel opment.

Page 39

SOFTWARE ENGINEERING

Requirements evolution:

Initial Changed
understanding understanding
of problem of problem
Initial | Changed
requirements requirements
E
Time

4.1) Enduring and volatilerequirements:
Enduring requirements; Stable requirements derived from the core activity of the customer
organisation. E.g. a hospital will always have doctors, nurses, etc. May be derived from domain
modds
Volatile requirements. Requirements which change during development or when the system isin
use. In ahospital, requirements derived from health-care policy

Requirements classification:

Requirement Description
Type
Mutable Requirementsthat change because of changes to the environment in which the

requirements organisation is operating. For example, in hospital systems, the funding of patient
care may change and thus require different treatment information to be collected.

Emergent Requirementsthat emerge as the customer's understanding of the system develops
requirements during the system devel opment. The design process may reveal new emergent
requirements.

Consequential Requirementsthat result from the introduction of the computer system. Introducing

requirements the computer system may change the organi sations processes and open up hew ways
of working which generate new system requirements

Compatibility Requirementsthat depend on the particular systems or business processes within an

requirements organisation. Asthese change, the compatibility requirements on the commissioned
or delivered system may also have to evolve.

4.2) Requirements management planning:
During the requirements engineering process, you have to plan:
— Requirementsidentification
How requirements are individually identified;
— A change management process
The process followed when analysing a requirements change;
— Traceahility palicies
The amount of information about requirements relationships that is maintained;
— CASE toal support
The tool support required to help manage requirements change;

Traceability:
Traceability is concerned with the rel ationships between requirements, their sources and the system design
Source traceability
— Linksfrom requirements to stakeholders who proposed these requirements;
Requirements traceability
— Links between dependent requirements;
Design traceability - Links from the requirementsto the design;

Page 40

SOFTWARE ENGINEERING

CASE tool support:

Requirements storage
— Requirements should be managed in a secure, managed data store.

Change management
— The process of change management is aworkflow process whose stages can be defined

and information flow between these stages partially automated.
Traceahility management
- Automated retrieval of the links between requirements.

4.3) Requirements change management:
Should apply to all proposed changes to the requirements.
Principal stages
— Problem analysis. Discuss requirements problem and propose change;
— Change analysis and costing. Assess effects of change on other requirements,
— Change implementation. Modify requirements document and other documentsto reflect

change.
Change management:
Identified Revised
""’b'e"_" Problem analysis and Change analysis Change requnrements.
change specification and costing implementation

SYSTEM MODELLING

System modelling hel ps the anal yst to understand the functionality of the system and models
are used to communicate with customers.
Different models present the system from different perspectives

0 Behavioural perspective showing the behaviour of the system;

0 Structura perspective showing the system or data architecture.

Model types

Data processing model showing how the datais processed at different stages.
Composition model showing how entities are composed of other entities.
Architectural modd showing principa sub-systems.
Classification modd showing how entities have common characteritics.
Stimulus/response model showing the system®s reaction to events.

CONTEXT MODELS:
Context models are used to illugtrate the operational context of a system - they show what
lies outside the system boundaries.
Social and organisational concerns may affect the decision on whereto position

system boundaries.
Architectural modd s show the system and its rel ationship with other systems.

Page 41

SOFTWARE ENGINEERING

The context of an ATM system:

Security
system
Branch
Account
accounting
system database
Auto-teller
system
Branch
- L e
system
Maintenance
system

Process models:
Process models show the overall process and the processes that are supported by thesystem.
Data flow models may be used to show the processes and the flow of information from
one process to another.

BEHAVIOURAL MODELS:
Behavioural models are used to describe the overall behaviour of a system.
Two types of behavioural modd are;
o Dataprocessing models that show how datais processed as it moves throughthe
system;
State machine models that show the systems response to events.
These model s show different perspectives so both of them are required to describe the
system‘s behaviour.

2.1) Data-processing models:
Data flow diagrams (DFDs) may be used to model the system‘s data processing.
These show the processing steps as data flows through a system.
DFDs arean intrinsic part of many analysis methods.
Simple and intuitive notation that customers can understand.
Show end-to-end processing of data.

Order processing DFD:

" Checkad and
Completed Signed Signed Send to signed order
order form oeder form ocduiorm/ supplier i + order
Order - notification
details + Complete '~ \ulidste |~ Record
blank order form order order
order form \ Adjust
e Signed
details | i e budget
Order
amount
+ account
v details
Orders Budget
file file

Page 42

SOFTWARE ENGINEERING

Data flow diagrams:
DFDs modd the system from a functional perspective.
Tracking and documenting how the data associated with a process is helpful to develop an
overall understanding of the system.
Data flow diagrams may also be used in showing the data exchange between a system and
other systemsin its environment.

2.2) State machine models:
These modd the behaviour of the system in response to external and internal events.
They show the system‘s responses to stimuli so are often used for modelling real-time systems.

State machine models show system states as nodes and events as arcs between these nodes.
When an event occurs, the system moves from one state toanother.
Statecharts are an integral part of the UML and are used to represent state machine models.

Statecharts:
Allow the decomposition of amode into sub-models (see following dide).
A brief description of the actionsisincluded following the _do® in each date.
Can be complemented by tables describing the states and thestimuli.

M icrowave oven model:

Full
power Full power
I * doc set powes
6500
A
Timer
«-_¥% Number
e v Pl Set time Operation
a5t iene oven
s “
P:: v 3 A Canced
Tieher dased ;
Dooe Start {
] open LY Dooe 4
Hall power Enabled open Waiting
= do: st power Doot do: dsplay do: display
- 300 chlod’ Teady' tirme
\J
Orsabled
do: display =
Waiting'
Microwave oven state description:
State Description
Waiting The oven iswaiting for input. The display shows the current time.
Half power The oven power is set to 300 watts. The display shows _Half power*.
Full power The oven power is set to 600 watts. The display shows _Full power*.
Set time The cooking time is set to the user‘s input value. The display shows the cooking time
selected and is updated asthetimeis set.
Disabled Oven operation isdisabled for safety. Interior oven light is on. Display shows _Not
ready".

Enabled Oven operation is enabled. Interior oven light is off. Display shows _Ready to cook‘.

Page 43

4

SOFTWARE ENGINEERING

Operation Oven in operation. Interior oven light ison. Display shows the timer countdown. On
completion of cooking, the buzzer is sounded for 5 seconds. Oven light is on. Display
shows _Cooking complete® while buzzer is sounding.

Microwave oven stimuli:

Stimulus Description
Half power The user has pressed the half power button
Full power The user has pressed the full power button
Timer The user has pressed one of the timer buttons
Number The user has pressed anumeric key
Door open The oven door switch isnot closed

Door closed The oven door switchis closed
Start The user has pressed the gart button
Cancd The user has pressed the cancel button

SEMANTIC DATA MODELS:
Used to describe the logical structure of data processed by the system.
An entity-relation-attribute model sets out the entities in the system, the relationships
between these entities and the entity attributes
Widely used in database design. Can readily be implemented using relationa databases.
No specific notation provided in the UML but objects and associations can be used.

Data dictionaries
Data dictionaries are lists of all of the names used in the system models. Descriptions of
the entities, relationships and attributes are also included.
Advantages
0 Support name management and avoid duplication;
Store of organisational knowledge linking analysis, design andimplementation;
Many CASE workbenches support datadictionaries.

OBJECT MODELS:
Object models describe the system in terms of object classes and their associations.
An object class is an abstraction over a set of objects with common attributes and the
services (operations) provided by each object.
Various object models may be produced
Inheritance modes,;
0 Aggregation modds,
Interaction models.
Natural ways of reflecting the real-world entities manipulated by the system
More abstract entities are more difficult to modd using thisapproach
Object classidentification isrecognised as a difficult process requiring a deep understanding of
the application domain
Object classes reflecting domain entities are reusabl e across systems

4.1) Inheritance models:
Organise the domain object classes into ahierarchy.
Classes at the top of the hierarchy reflect the common features of all classes.
Object classes inherit their attributes and services from one or more super-classes. these may
then be specialised as necessary.

Page 44

SOFTWARE ENGINEERING

Class hierarchy design can be adifficult processif duplication in different branchesisto
be avoided.

Object modelsand the UML :

The UML isastandard representation devised by the devel opers of widely used object-

oriented anaysis and design methods.

It has become an effective standard for object-oriented modelling.

Notation

0 Object classes are rectangles with the name at the top, attributesin the middle sectionand

operations in the bottom section;
Rel ationships between object classes (known as associ ations) are shown as lines
linking objects;
Inheritanceisreferred to as generalisation and is shown _upwards® rather than
_downwards* in a hierarchy.

Library class hierarchy:

Ubrary uses
Name
Address
Phone
Registration #
Dencbgto
A
Reader Borrower
Affiliation ems on loan
Max loans
Staft Student
Depertment phone Nmm

User classhierarchy:

Rrade Bomovwer
AR lanor Rems on loan
Maa oans
Stan Student

Page 45

SOFTWARE ENGINEERING

Multiple inheritance:
Rather than inheriting the attributes and services from a single parent class, a system which
supports multiple inheritance allows object classes to inherit from several super-classes.

This can lead to semantic conflicts where attributes/services with the same namein
different super-classes have different ssmantics.

Multiple inheritance makes class hierarchy reorganisation more complex.

Multiple inheritance

Author Speaker
Edition Duration
Publication date Recording date
ISBN
A A
Talking book
Tapes

Object aggregation:
An aggregation model shows how classes that are coll ections are composed of other classes.
Aggregation models are Smilar to the part-of relationship in semantic datamodels.

4.2) Object aggregation

Study pack
Course title
Numbar
Year
Instructor
<'\> C’ (‘\.’ ?
} - }
Assignment OHP slides ach Videotape
Credits Slides et pe ids
#Problems Text
Description Diagrams

Object behaviour modelling

Page 46

SOFTWARE ENGINEERING

A behavioura model shows the interactions between objects to produce some particular

system behaviour that isspecified asause-case. =~)))
Sequence diagrams (or collaboration diagrams) in the UML are used to moddl interaction
between objects.

STRUCTURED METHODS:
Structured methods incorporate system modelling as an inherent part of the method.
Methods define a set of models, a process for deriving these models and rules and guidelines
that should apply to the models.
CASE tools support system modelling as part of a sructured method.

M ethod weak nesses:
They do not model non-functional system requirements.
They do not usudly include information about whether a method is appropriate for a
given problem.
The may produce too much documentation.
The system model s are sometimes too detailed and difficult for users to understand.

CASE wor kbenches:
A coherent set of tools that is designed to support reated software process activities such
asanalysis, design or testing.
Analysis and design workbenches support system modelling during both requirements
engineering and system design.
These workbenches may support a specific design method or may provide support for a
creating severa different types of system moddl.

An analysisand design workbench

Data d?""w faport
: iagramming
dictionary tools facilities
” -
\\\ ‘ > //
S //

Central Query

Cole — information —— language

—— repository facilities
Forms Design, ana.fysis import/export

=) (Fas) (=

Page 47

SOFTWARE ENGINEERING

Analysis workbench components:
Diagram editors
Model analysis and checking tools
Repository and associated query language
Datadictionary
Report definition and generation tools
Forms definition tools
Import/export trandators
Code generation tools

Page 48

SOFTWARE ENGINEERING

UNIT-II
DESIGN ENGINEERING

Design engineering encompasses the set of principals, concepts, and practices that lead to

the development of a high- quality system or product.
D&?i gn %g nciples establish an overriding phil osophy that guides the designer in the work that is
erformed.
Bes’gn concepts must be understood before the mechanics of design practice are applied and
Design practice itself |eads to the creation of various representations of the software that serve as a guide for
the construction activity that follows.

What isdesign:

Design iswhat virtually every engineer wants to do. It isthe place where creativity rules —
customer*s requirements, business needs, and technical considerations all come together in the formulation
of aproduct or a system. Design creates arepresentation or model of the software, but unlike the analysis
model, the design model provides detail about software data structures, architecture, interfaces, and
components that are necessary to implement the system.

Why isit important:

Design allows a software engineer to model the system or product that Isto be built. This model can
be assessed for quality and improved before code is generated, tests are conducted, and end — users become
involved in large numbers. Design is the place where software quality is established.

The goal of design engineering isto produce a modd or representation that exhibits firmness,
commaodity, and delight. To accomplish this, a designer must practice diversification and then
convergence. Another goal of software design isto derive an architectural rendering of a system. The
rendering serves as a framework from which more detailed design activities are conducted.

1) DESIGN PROCESSAND DESIGN QUALITY:
Software design is an iterative process through which requirements are trandated into a
-blueprintll for constructing the software.

Goals of design:

McGlaughlin suggests three characteristics that serve as a guide for the eval uation of a good design.

The design must implement al] of the explicit requirements contained in the analysis mode, and it must
accommodate all of the wggllcn requirements desired by the customer.
The design must be areadable, understandabl e guide for those who generate code and for those who test
and subsequently support the software,))
The design should provide a complete picture of the software, addressing the data, functional, and
behavidra domains from an implementation perspective.

Quiality guiddines:
In order to evaluate the quality of a design representation we must establish technical criteriafor
good design. These are the following guidelines:
A design should exhibit an architecture that
has been created using recognizabl e architectural styles or patterns
is composed of components that exhibit good design characteristics and
can be implemented in an evolutionary fashion, thereby facilitating implementation
and testing.
A design should be modular; that is, the software should be logically partitioned into elements
or subsystems.
A design should contain distinct representation of data, architecture, interfaces and components.
A design should lead to data structures that are appropriate for the classes to be implemented and
are drawn from recognizable data patterns.
A design should lead to components that exhibit independent functional characteristics.

Page 49

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

A design should lead to interface that reduce the complexity of connections between
components and with the externa environment.

A design should be derived using a repeatable method that is driven by information
obtained during software requirements analysis.

A design should be represented using a notation that effectively communication its meaning.

These design guidelines are not achieved by chance. Design engineering encourages good design through
the application of fundamental design principles, systematic methodol ogy, and thorough review.

Quiality attributes:
The FURPS quality attributes represent atarget for all software design:

Functionality is assessed by evaluating the feature set and capabilities of the program, the
generality of the functions that are delivered, and the security of the overall system.

Usability is assessed by considering human factors, overall aesthetics, consistency and
documentation.

Reliability is evaluated by_measurin? the frequency and severity of failure, the accuracy of output

results, and the mean — time —to- failure (MTT%/), the ability to recover from failure, and the

predictability of the program.

Ef?_rfprmance is measured by processing speed, response time, resource consumption, throughput, and
iciency

Supportability combines the ability to extend the program (extensibility), adaptability, serviceability- these
three attributes represent a more common term maintainability

Not every software quality attribute isweighted equally as the software design is
devel oped. One application may stress functionality with a special emphasis on security.
Another may demand performance with particular emphasison processing speed.

A third might focus on reliability.

2) DESIGN CONCEPTS:

M.A Jackson once said:IThe beginning of wisdom for a software engineer is to recognize the difference
between getting a program to work, and getting it right.l Fundamental software design concepts provide
the necessary framework for —getting it right.|

Abstraction: Many levels of abstraction are there.

At thehi gh&?t level of abstraction, a solution is stated in broad terms using the language of the problem
environment.
At lower level s of abstraction, a more detailed description of the solution is provided.

A procedural abstraction refersto a sequence of instructions that have a specific and limited function. The
name of procedural abstraction implies these functions, but specific details are suppressed.

A data abstraction isanamed collection of datathat describes a data object.

In the context of the procedural abstraction open, we can define a data abstraction called door. Like any
data object, the data abstraction for door would encompass a set of attributes that describe the door (e.g.,
door type, swing operation, opening mechanism, weight, dimensions). It follows that the procedural
abstraction open would make use of information contained in the attributes of the data abstraction door .

Ar chitecture:

Software architecture alludes to -the overal structure of the software and the ways in which that structure
provides conceptual integrity for a systeml. In its simplest form, architecture is the structure or organization
of program components (modules), the manner in which these components interact, and the structure of
data that are used by the components.

One goal of software design isto derive an architectural rendering of a system. The rendering serves asa
framework from which more detailed design activities are conducted.

Page 50

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

The architectural design can be represented using one or more of a number of different models.
Structured model s represent architecture as an organized collection of program components.

Framework modelsincrease thelevel of design abstraction by attempting to identify repestable
architectural design frameworks that are encountered in similar types of applications.

Dynamic model s address the behavioral aspects of the program architecture, indicating how the structure
or system configuration may change as a function external events.

Process model s focus on the design of the business or technical process that the system must
accommodate. Functional models can be used to represent the functional hierarchy of a system.

Patterns:

Brad Appleton defines a design pattern in the following manner: -a pattern is a named nugget of inside
which conveys that essence of a proven solution to a recurring problem within a certain context amidst
competing concerns.| Stated in another way, a design pattern describes a design structure that solves a
particular design within a specific context and amid —forcesll that may have an impact on the manner in
which the pattern is applied and used.
The intent of each design pattern isto provide a description that enables a designer todetermine

Whether the pattern is capabl e to the current work,

Whether the pattern can be reused,

Whether the pattern can serve as a guide for developing a similar, but functionally or

structuraly different pattern.

V. Modularity:

Software architecture and design patterns embody modularity; software is divided into separately
named and addressable components, sometimes called modules that are integrated to satisfy problem
requirements.

It has been stated that -modularity is the single attribute of software that allows a program to be
intellectually manageablel. Monalithic software cannot be easily grasped by a software engineer. The
number of control paths, span of reference, number of variables, and overall complexity would make
understanding close to impossible.

The —divide and conquerl strategy- it‘s easier to solve a complex problem when you break it into
manageable pieces. This has important implications with regard to modularity and software. If we
subdivide software indefinitely, the effort required to develop it will become negligibly small. The effort to
develop an individual software module does decrease as the total number of modules increases. Given the
same set of requirements, more modules means smaller individua size. However, asthe number of modules
grows, the effort associated with integrating the modules also grow.

Under modularity or over modularity should be avoided. We modularize a design so that
development can be more easily planned; software increment can be defined and delivered; chamges can be
more easly accommodated; testing and debugging can be conducted more efficiently, and long-term
maintenance can be conducted without serious side effects.

Information Hiding:

The principle of information hiding suggests that modules be -characterized by design decision that
hides from all others.|
Modules should be specified and designed so that information contained within amodule isinaccessible
to other modules that have no need for such information.

Hiding implies that effective modularity can be achieved by defining a set of independent modules
that communicate with one another only that information necessary to achieve software function.
Abstraction helps to define the procedural entities that make up the software. Hiding defines and enforces
access constraints to both procedural detail within a module and local data structure used by module.

The use of information hiding as a design criterion for modular systems provides the greatest
benefits when modifications are required during testing and later, during software maintenance. Because
most data and procedure are hidden from other parts of the software, inadvertent errors introduced during
modification are less likely to propagate to other |ocations within software.

Page 51

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

VI. Functional Independence:

The concept of functional independence is a direct outgrowth of modularity and the concepts of
abstraction and information hiding. Functional independence is achieved by devel oping modules with
-single mindedl function and an -aversionll to excessive interaction with other modules. Stated another
way, we want to design software so that each modul e addresses a specific sub function of requirements and
has a simple interface when viewed from other parts of the program structure.

Software with effective modularity, that is, independent modules, is easier to develop because
function may be compartmentalized and interfaces are simplified. Independent sign or code modifications
are limited, error propagation is reduced, and reusable modules are possible. To summarize, functional
independence isakey to good design, and design isthe key to software quality.

Independence is assessed using two qualitative criteria: cohesion and coupling. Cohesion is an
indication of the relative functional strength of a module. Coupling is an indication of the relative
interdependence among modules. Cohesion isanatural extension of the information hiding.

A cohesion module performs a single task, requiring little interaction with other components in
other parts of a program. Stated simply, a cohesive module should do just one thing.

Coupling is an indication of interconnection among modules in a software structure. Coupling
depends on the interface complexity between modules, the point at which entry or reference is made to a
module, and what data pass across the interface. In software design, we strive for lowest possible coupling.
Simple connectivity among modules results in software that is easier to understand and less proneto a
-ripple effectl, caused when errors occur at one location and propagates throughout a system.

VII. Refinement:

Stepwise refinement is atop- down design strategy originally proposed by Niklaus wirth. A program is
development by successively refining levels of procedural detail. A hierarchy is development by
decomposing a macroscopic statement of function in a step wise fashion until programming language
statements are reached.

Refinement is actually a process of eaboration. We begin with a statement of function that is
defined at a high level of abstraction. That is, the statement describes function or information conceptually
but provides no information about the internal workings of the function or the internal structure of the data.
Refinement causes the designer to elaborate on the original statement, providing more and more detail as
each successive refinement occurs.

Abstraction and refinement are complementary concepts. Abstraction enables a designer to specify
procedure and data and yet suppress low-level details. Refinement helps the designer to reveal low-level
details as design progresses. Both concepts aid the designer in creating a complete design model as the
design evalves.

VIII. Refactoring :

Refactoring is a reorgani zation technique that simplifies the design of a component without changing its
function or behavior. Fowler defines refactoring in the following manner: -refactoring is the process of
changing a software system in such a way that it does not alter the external behavior of the code yet
improvesitsinterna structure.|

When software is refactored, the existing design is examined for redundancy, unused
design dements, inefficient or unnecessary algorithms, poorly constructed or inappropriate data structures,
or any other design failure that can be corrected to yield a better design. The designer may decide that the
component should be refactored into 3 separate components, each exhibiting high cohesion. The result will
be software that is easier to integrate, easier to test, and easier to maintain.

IX. Design classes:
The software team must define a set of design classes that
Refine the analysis classes by providing design detail that will enable the classes to be
implemented, and

Page 52

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Creste a new set of design classes that implement a software infrastructure to support the design
solution.
Five different types of design classes, each representing a different layer of the design architectureare

suggested.
User interface classes: define al abstractions that are necessary for human computer interaction.
In many cases, HCL occurs within the context of a metaphor and the design classes for the
interface may be visual representations of the e ements of the metaphor.

Business domain classes. are often refinements of the analysis classes defined earlier. The classes
|d dentify the attributes and services that are required to implement some element of the business
omain.

F?r ocess classes implement lower — level business abstractions required to fully manage the business domain
classes.
Persistent classes represent data stores that will persist beyond the execution of the software.

System classes implement software management and control functions that enable the system to operate and
communicate within its computing environment and with the outside world.

Asthe design model evolves, the software team must devel op a complete set of
attributes and operations for each design class. Theleve of abstraction isreduced as each andysis classis
transformed into a design representation. Each design class be reviewed to ensure that it is —well-formed.|
They define four characteristics of awell- formed design class.

Complete and sufficient: A design class should be the complete encapsulation of all attributes and
methods that can reasonably be expected to exist for the cass. Sufficiency ensures that the design class
contains only those methods that are sufficient to achieve the intent of the class, no more and noless.

Primitiveness. Methods associated with a design class should be focused on accomplishing one service for
the class. Once the service has been implemented with a method, the class should not provide another way
to accomplish the same thing.

High cohesion: A cohesive design class has a small, focused set of responsibilities and single- mindedly
applies attributes and methods to implement those responsibilities.

L ow coupling: Within the design mode, it is necessary for design classes to collaborate with one ancther.
However, collaboration should be kept to an acceptable minimum. If a design model is highly coupled the
system is difficult to implement, to test, and to maintain over time. In general, design classes within a
subsystem should have only limited knowledge of classes in other subsystems. This restriction, caled the
law of Demeter, suggests that a method should only sent messages to methods in neighboring classes.

THE DESIGN MODEL:

The design model can be viewed into different dimensons.

The process dimension indicates the evolution of the design model as design tasks are executed as

a part of the software process.

The abstraction dimension represents the level of detail as each element of the analysismodel
istransformed into a design equivalent and then refined iteratively.
The dements of the design model use many of the same UML diagrams that were used in the anaysis
model. The difference is that these diagrams are refined and elaborated as a path of design; more
implementation- specific detail is provided, and architectural structure and style, components that reside
within the architecture, and the interface between the components and with the outside world are al
emphasized.

It is important to mention however, that model elements noted along the horizonta axis are not
always developed in a sequential fashion. In most cases preliminary architectural design sets the sage and
is followed by interface design and component-level design, which often occur in parallel. The deployment
model us usually delayed until the design has been fully devel oped.

Page 53

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

high
analy sis mode|l
class diagrams
analysis packages i :
5 CRCy g | 9 use- cases - text class diagrams analysis ReqUIrem_ent s:
- models - use- case diagrams packages CRC models constraint s
(e collaborat ion diagrams . . X i . -
= dat a f low diagrams act ivit y diagrams sw collaborat ion diagrams int eroperabilit
o cont rol- f low diagrams im lane dla_gran'?s dat a flow diagrams y t arget s and
t " a8 narrat iv collaborat ion diagrams cont rol- f low diagrams conf iqurat ion
'_E processing narrat ves st at e diagrams processing narrat ives st gu
— sequence diagrams at e diagrams sequence
e ———— diagrams
0 ——==
E e
— e
E design class realizat ions N e T -
e
+ subsyst ems — e —
E collaborat ion diagrams t echnical int erf ace component diagrams i .
desi . . design class realizat ions
m esign design classes act ivit subsyst ems
Navigat ion design y diagrams sequence 4 . .
GUI design diagrams collaborat ion diagrams
R component diagrams
de sign mode design classes
ref inement s t o: act ivity di:_grams
i : sequence diagrams
ref |n§ment sto: o component diagrams a 9
gﬁggynstc‘learﬁz realizat ions design classes |
act ivit y diagrams *
low collaborat ion diagrams y d.g
sequence diagrams deployment diagrams

archit ect ure int erface component -leveldeployment -level
element s element s element s element s

process dimension

Data design elements:
Data design sometimes referred to as data architecting creates amodel of dataand/or information that is
represented at a high level of abstraction. This data modd isthen refined into progressively more
implementati on-specific representations that can be processed by the computer-based system.
The structure of data has aways been an important part of software design.

At the program component level, the design of data structures and the associated a gorithms required to
mani pul ate them is essential to the criterion of high-quality applications.

At the application level, the trandlation of a data modd into adatabaseis pivotal to achieving the business
objectives of a system.

At the business level, the callection of information stored in disparate databases and reorganized into a
-data warehousel enables data mining or knowledge discovery that can have an impact on the
success of the businessitself.

Architectural design elements:
The architectural design for software isthe equivalent to the floor plan of a house.
The architectural model is derived from three sources.
Information about the application domain for the software to be built.

Specific analysis modd el ements such as data flow diagrams or analysis classes,
their relationships and collaborations for the problem at hand, and

The availability of architectura patterns

Interface design el ements:
The interface design for software isthe equivalent to a set of detailed drawings for the
doors, windows, and external utilities of a house.

Page 54

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

The interface design e ements for software tell how information flows into and out of the system
and how it is communicated among the components defined as part of the architecture. There are
3 important elements of interface design:

The user interface(Ul);

External interfaces to other systems, devices, networks, or other produces or consumers
of information; and

Internal interfaces between various design components.

These interface design e ements allow the software to communicated externally and enable internal
communication and coll aboration among the components that populate the software architecture.

Ul design isamajor software engineering action.

The design of a Ul incorporates aesthetic elements (e.g., layout, color, graphics, interaction
mechanisms), ergonomic elements (e.g., information layout and placement, metaphors, Ul navigation), and
technical e ements (e.g., Ul patterns, reusable components). In general, the Ul is a unique subsystem within
the overall application architecture.

The design of external interfaces requires definitive information about the entity to which
information is sent or received. The design of external interfaces should incorporate error checking and
appropriated security features.

UML defines an interface in the following manner:lan interface is a specifier for the externaly-
visible operations of a class, component, or other classifier without specification of internal structure.|

MobilePhone

WirelessPDA

i
R ——

Cont rolPanel

LCDdisplay LEDindicat ir
ors keyPadCharact

erist ics speaker Key Pad

e
-

wirelessint erf ace

readKeySt roke()
decodeKey ()
displaySt at us()
light LEDs()
sendControlMsg()

<<int erfac e> >
Key Pad

readKeyst roke()
decodeKey()

Figure 9 . 6 UML int erfac e represent ationforControlPanel

Page 55

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

iv. Component- level design elements: The component-level design for softwareis equivalent toa
set of detailed drawings.
The component-level design for software fully describes the internal detail of each software
component. To accomplish this, the component-level design defines data structures for all local
data objects and algorithmic detail for al processing that occurs within a component and an
interface that allows access to all component operations.

SensorManagement

———————— »> Sensor

v. Deployment-level design elements. Deployment-level design eements indicated how software
functionality and subsystems will be alocated within the physical computing environment
that will support the software

o

Cont rol Panel CPI serv er

Security homeownerAccess

Personal comput er

——1
externalAccess

| — |
‘ Security Surveillance
‘ homeManagement ‘ communication

Figure 9. 8 UML deploy m ent diagram for SafeHom e

ARCHITECTURAL DESIGN

—

1) SOFTWARE ARCHITECTURE:

What I's Architecture?
Architectural design representsthe structure of data and program components that are required
to build a computer-based system. It considers

Page 56

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

the architectura style that the system will take,
the structure and properties of the components that constitute the system, and
the interrelationships that occur among all architectural components of asystem.

The architecture is arepresentation that enables a software engineer to
andyze the effectiveness of the design in meeting its Sated requirements,
consider architectural aternatives at a stage when making design changesis till relatively
easy, (3) reducing the risks associated with the construction of the software.

The design of software architecture considers two levels of the design pyramid
data design

architectural design.
Data design enables usto represent the data component of the architecture.
Architectural design focuses on the representation of the structure of software components, their
properties, and interactions.

Why I's Ar chitectur e Important?

Bass and his colleagues [BAS98] identify three key reasons that software ar chitecture isimportant:
Representations of software architecture are an enabler for communication between all

parties (stakeholders) interested in the devel opment of a computer-based system. .

The architecture highlights early design decisionsthat will have a profound impact on all software
engineering work that follows and, as important, on the ultimate success of the system as an
operational entity.
Architecture -constitutes a relatively small, intellectually graspable model of how the system
is structured and how its componentswork togetherl

DATA DESIGN:
The data design activity trandates data objects as part of the analysis model into data structuresat

the software component level and, when necessary, a database architecture at the application level.
At the program component level, the design of data structures and the associated a gorithms required
to manipulate them is essentia to the creation of high-quality applications.

At the application level, the trand ation of a data model (derived as part of requirements
engineering) into adatabaseis pivotal to achieving the business objectives of a system.

At the business level, the collection of information stored in disparate databases and reorganized
into a -data warehousel enables data mining or knowledge discovery that can have an impact on
the success of the business itself.

2.1) Data design at the Architectural Level:
The challenge for a business has been to extract useful information from this data environment, particularly
when the information desired is cross functional.

To solve this challenge, the business IT community has developed data mining techniques, also
called knowledge discovery in databases (KDD), that navigate through existing databases in an attempt to
extract appropriate business-level information. An aternative solution, called a data warehouse, adds an
additional layer to the data architecture. a data warehouse is a large, independent database that encompasses
some, but not all, of the data that are stored in databases that serve the set of applications required by a
business.

2.2) Data design at the Component L evel:

Data design at the component level focuses on the representation of data structures that are
directly accessed by one or more software components. The following set of principles for data
specification:

The systematic analysis principles applied to function and behavior should a so be applied to data.

All data structures and the operations to be performed on each should beidentified.

A data dictionary should be established and used to define both data and program design.

Low-level data design decisions should be deferred until latein the design process.

Page 57

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Therepresentation of data structure should be known only to those modules that must make
direct use of the data contained within the structure.

A library of useful data structures and the operations that may be applied to them should

be devel oped.

A software design and programming language should support the specification and realization
of abstract data types.

ARCHITECTURAL STYLESAND PATTERNS:

The builder has used an architectural style as a descriptive mechanism to differentiate the house
from other styles (e.g., A-frame, raised ranch, Cape Cod).

The software that is built for computer-based systems also exhibits oneof many architectura
styles.

Each style describes a system category that encompasses

A set of components (e.g., a database, computational modules) that perform a function
required by a system;

A set of connectorsthat enable -communication, coordinations and cooperationll among
components;

Congtraintsthat define how components can be integrated to form the system; and

(4) Semantic modelsthat enable a designer to understand the overall properties of a system by
analyzing the known properties of its constituent parts.

An architectural pattern, like an architectural style, imposes a transformation the design of
architecture. However, a pattern differs from a style in anumber of fundamental ways:

The scope of a pattern isless broad, focusing on one aspect of the architecture rather than
the architecturein its entirety.

A pattern imposes arule on the architecture, describing how the software will handle some aspect
of its functionality at the infragtructure level.

Architectural patternstend to address specific behavioral issues within the context of
the architecturd.

3.1) A Brief Taxonomy of Styles and
Patter ns Data-center ed ar chitectures:

A data store (e.g., a file or database) resides at the center of this architecture and is accessed
frequently by other components that update, add, delete, or otherwise modify data within the store. A
variation on this approach transforms the repository into a -blackboardll that sends notification to client
software when data of interest to the client changes

Data-centered architectures promote integrability. That is, existing components can be changed
and new client components can be added to the architecture without concern about other clients (because
the client components operate independently). In addition, data can be passed among clients using the
blackboard mechanism

client client
software software
client client
xofuire. /‘ software
Data store
[reposiory or .
et e B2ch Poarel Pt
software / \
client client
software software

Page 58

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Data-flow ar chitectur es. This architecture is applied when input data are to be transformed through a
series of computational or manipulative components into output data. A pipe and filter pattern has a set of
components, called filters, connected by pipes that transmit data from one component to the next. Each
filter works independently of those components upstream and downstream, is designed to expect datainput
of a certain form, and produces data output of a specified form.

If the data flow degeneratesinto asingle line of transforms, it istermed batch sequential. This
pattern accepts a batch of data and then applies a series of sequential components (filters) to transformit.

// p R8s \ i S — filter —L

— filter —z filter L filter . filter
™ iter L filter 4|—:.. filter
SR filter

(@) pipesand filters

— filter |— filter ——4- filter f—— filter f——

(k) batch secuential

Call and return architectures. This architectura style enables a software designer (system architect) to
achieve a program structure that isrelatively easy to modify and scale. A number of substyles [BAS98]
exist within this category:
Main program/subprogram architectures. This classic program structure decomposes function
into a control hierarchy where a —mainl program invokes a number of program components,
which in turn may invoke still other components. Figure 13.3 illustrates an architecture of this
type.
Remote procedure call architectures. The components of amain program/ subprogram
architecture are distributed across multiple computers on a network

&
=r=__ fan-ou

ol B [

I“TLEJ
InIIOIIPILJ
Ellanln

deplth

I [
[o] (]
{100 G

wadth

L 4

Page 59

W SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Object-oriented ar chitectur es. The components of a system encapsul ate data and the operations that must
be applied to manipulate the data. Communication and coordination between components is accomplished

via message passing.

L ayered architectures. The basic structure of a layered architectureisillustrated in Figure 14.3. A number
of different layers are defined, each accomplishing operations that progressively become closer to the
machine ingruction set. At the outer layer, components service user interface operations. At the inner layer,
components perform operating system interfacing. Intermediate layers provide utility services and
application software functions.

components

userinterface layer
applicaton layer

 uflity layer
L]
5} core layer
m Y
L]

3.2) Architectural Patterns:
An architectural pattern, like an architecturd style, imposes a transformation the design of
architecture. However, a pattern differs from a style in anumber of fundamental ways:
The scope of a pattern isless broad, focusing on one aspect of the architecture rather than
the architecture in its entirety.

A pattern imposes arule on the architecture, describing how the software will handle some
aspect of its functionality at theinfrastructure level.

Architectural patternstend to address specific behavioral issues within the context of
the architectural.

The architectura patternsfor software define a specific approach for handling some
behavioral characteristics of the system
Concurrency—applications must handle multiple tasks in amanner that simulates
paralelism o operating system process management pattern
0 task scheduler pattern

Per sistence—Data persigs if it survives past the execution of the process that created it. Two patterns
are common:
a database management system pattern that applies the storage and retrieval capability of
a DBMS to the application architecture
an application level persisgence pattern that builds persistence featuresinto
the application architecture

Page 60

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Distribution— the manner in which systems or components within systems communicate with one another
in adistributed environment

A broker actsasa_middle-man* between the client component and a server component.

Organization and Refinement:

The design process often leaves a software engineer with a number of architectural alternatives, it is
important to establish a set of design criteria that can be used to assess an architectural design that is
derived. The following questions provide insight into the architectural style that has been derived:

Control.

Data.

How is control managed within the architecture?) o)

Eo&s a r?)lgtl nct control hierarchy exist, and if so, what is the role of components within this control
lerarcnys

How do componentstransfer control within the syslem?

How iscontrol shared among components?

How are data communi cated between components?
Isthe flow of data continuous, or are data objects passed to the system sporadically?)
What isthe mode of datatransfer (i.e., are data passed from one component to another or are data available
gl obally to be shared among system components)? o

0 data components (e.g., a blackboard or repository) exit, and if so, what istheir role?
How do functional components interact with data components?))]
Are data components passive or active (i.e., does the data component actively interact with other
componentsin the system)? How do data and contral interact within the system?

4) ARCHITECTURAL DESIGN:

Repr esenting the System in Context:

At the architectural design level, a software architect uses an architectural context diagram (ACD) to
model the manner in which software interacts with entities external to its boundaries. The generic structure
of the architectural context diagramisillugtrated in thefigure

Superordinate systems
Safehome Internet-based
Product system
control
' : target
panel system: surveillance
Security Function function
uses
homeowner [
uses peers
4 .
| | uses
h J A4
sensors sensors

Subordinate systems

Super or dinate systems — those systems that use the target system as part of some higher level
processing scheme.

Page 61

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Subor dinate systems - those systems that are used by the target system and provide data or processing
that are necessary to complete target system functionality.

Peer -level systems - those systems that interact on a peer-to-peer basis

Actor s -those entities that interact with the target system by producing or consuming information that
isnecessary for requisite processing

Defining Archetypes:

An archetype is a class or pattern that represents a core abstraction that is critica to the design of
architecture for the target system. In general, arelaive smal set of archetypes is required to design even
relatively complex systems.

In many cases, archetypes can be derived by examining the analysis classes defined as part of the
anadysismodel. In safe home security function, the following are the archetypes:

Node: Represent a cohesive collection of input and output elements of the home security
function. For example a node might be comprised of (1) various sensors, and (2) a variety of
aarm indicators.

Detector: An abstraction that encompasses all sensing equipment that feeds information into
the target system

Indicator: An abstraction that represents al mechanisms for indication that an adarm
condition is occurring.

Controller: An abstraction that depicts the mechanism that alows the arming or disarming of
a node. If controllers reside on a network, they have the ability to communicate with one
another.

Controller

communicates with

Node

Detector Indicator

Figure 10.7 UML relat ionships for SafeHome security function archetypes
(adapted f rom [BOS00])

Refining the Ar chitectur e into Components:
As the architecture is refined into components, the structure of the system begins to emerge. The
architectura designer begins with the classes that were described as part of the analysis modd. These
analysis classes represent entities within the application domain that must be addressed within the software

Page 62

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

architecture. Hence, the application domain is one source is the infrastructure domain. The

architecture must accommodate many infrastructure components that enabl e application domain.

For eg: memory management components, communication components database components, and

task management components are often integrated into the software architecture.

In the safeHome security function example, we might define the set of top-level components that address
the following functionality:

External communication management- coordinates communication of the
security function with externa entities

Control panel processing- manages all control panel functionality.
Detector management- coordinates access to all detectors attached to the system.
Alarm processing- verifies and acts on all alarm conditions.

Design classes would be defined for each. It isimportant to note, however, that the design details of
all attributes and operations would not be specified until component-level design.

[_| safeHome
[] Execut ive

B /7 ¥‘¥'\ - Funct |.0n
- N ~ P select ion
= AN ~, =

N

’f

- ~a S

=g

\ ~
I ~ S ==
" Ext ernal \\ Nn o v
. . ~ R
Communicat ion \\ N S
Management - T~ ™
\ -~ P g
\ e S
L. J o —
4 \ '_L . :
,’ \] Security l Surveillance Home
- N - veu management
Z Ay = l
GUI Int ernet |7 I
-~
Int erface - k bt ¥
el \ - =
i \ ~
i]

| Control | detector alarm
panel management processing
— processing
l

|

Component Structure

Describing I nstantiations of the System: An actual ingtantiation of the architecture meansthe
architecture is applied to a specific problem with the intent of demonstrating that the structure
and components are appropriate.

Page 63

W SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

| | SafeHome
= Execut ive

- e ~ ~ -~
- - h e = E ~
- N ~
N Ny
Ext ernal ~ N~ il
Communicat ion \\ S TN
Management ~ ~
\
s .
, \\ Security eww
/ N

M ocu [T internet

] Interface o

(I n el 9
s . .

Cont rol det ect or alarm
panel m anagem ent processing
processing

T 4 AN

’
Key pad ’ \
processing 7 / scheduler phone
P com m unicat ion| 1
7 \
| \

CP display
functions

Object And Object Classes

Object : An object is an entity that has a state and a defined set of operations that operate on that
state.

An obect class defination is both atype specification and atemplate for creating obects.

It includes declaration of all the attributes and operations that are associated with object of that
class.

Object Oriented Design Process
There are five stages of object oriented design process
1)Understand and define the context and the modes of use of the
system. 2)Design the system architecture
3) Identify the principle objectsin the
system. 4)Devel op a design models
5) Specify the object interfaces
Systems context and modes of use

It specify the context of the system.it a so specify the relationships between the software that is
being designed and its external environment.

If the system context isa static model it describe the other system in that environment.

If the system context isa dynamic model then it describe how the system actually interact with the
environment.

Page 64

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

System Architecture

Once the interaction between the software system that being designed and the system
environment have been defined

We can use the above information as basis for designing the System Architecture.
Object Identification

This process is actually concerned with identifying the object classes.
We can identify the object classes by the following
1)Use agrammatical analysis
2)Use atangible entities 3)Use
abehaviourial approach
4) Use a scenario based
approach Design model
Design models are the bridge between the requirements and impl ementation.
There are two type of design models
1) Static modd describe the relationship between the objects.
2)Dynamic model describe the interaction between theobjects
Object Interface Specificationlt is concerned with specifying the details of the interfacesto
an objects.
Design evolution
The main advantage OOD approach is to simplify the problem of making changesto the
design. Changing the internal details of an obect is unlikely to effect any other system object.

Page 65

W SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

USER INTERFACE DESIGN

Interface design focuses on three areas of concern:

the design of interfaces between software components,

the design of interfaces between the software and other nonhuman producers and consumers
of information (i.e., other external entities), and

the design of the interface between ahuman (i.e,, the user) and the computer.

What isUser Interface Design?

User interface design creates an effective communication medium between a human
and a computer. Following a set of interface design principles, design identifies interface objects
and actions and then creates a screen layout that formsthe basis for a user interface prototype.

Why isUser Interface Design important?

If softwareis difficult to use, if it forces you into mistakes, or if it frustrates your efforts to
accomplish your goals, you won‘t like it, regardless of the computational power it exhibits or the
functionality it offers. Because it molds a user‘s perception of the software, the interface has to be right.

1.1 THE GOLDEN RULES
Theo Mandel coins three -golden rulesl:
Place the user in contral.
Reduce the user‘s memory load.
Make the interface consistent.
These golden rules actually form the basis for a set of user interface design principles that guide
thisimportant software design activity.

Placethe User in Control
Mandel [MAN97] defines anumber of design principles that allow the user to maintain control:

Define interaction modes in a way that does not force a user into unnecessary or undesired
actions. Word processor — spell checking — move to edit and back; enter and exit with little or no effort

Provide for flexible interaction. Several modes of interaction — keyboard, mouse, digitizer pen or

voice recognition, but not every action is amenable to every interaction need. Diffictlt to draw a
circle using keyboard commands.

Allow user interaction to be interruptible and undoable. User stop and do something and then resume
whereleft off. Be able to undo any action.

Streamline interaction as skill levels advance and allow the interaction to be cusomized. Perform same
actions repeatedly; have macro mechanism so user can customize interface.

Hide technical internals from the casual user. Never reguired to use OS commands; file management
functions or other arcane computing technol ogy.

Design for direct interaction with oblbects that appear on the screen. User has fed of control when
interact directly with objects; stretch an object.

Reduce the User’s Memory Load:
The more a user hasto remember, the more error-prone interaction with the system will be.

Good interface design does not tax the user‘s memory

&/stergcglrllould remember pertinent details and assist the user with interaction scenario that assists
usSer recall.

Mandel defines design principles that enable an interface to reduce the user‘s memory load:

Page 66

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Reduce demand on short-term memory. Complex tasks can put a significant burden on
short term memory. System designed to reduce the requirement to remember past actions and
results; visual cues to recognize past actions, rather than recall them.

Estéate)tlisht.meaningful defaults. Initid defaults for average user; but specify individua preferences with
areset option.
Define shortcuts that are intuitive. Use mnemonics like Alt-P.

Thevisual layout of the interface should be based on areal world metaphor . Bill payment
— check book and check register metaphor to guide a user through the bill paying process; user
has |essto memorize

Disclose information in a progressive fashion. Organize hierarchicaly. High leve of
abstraction and then elaborate. Word underlining function — number of functions, but not all
listed. User picks underlining then all options presented

Make the I nterface Consistent
Interface present and acquire information in a cond stent fashion.

All visual information is organized to adesign standard for al screen displays

Input mechanisms are constrained to limited set used consistently throughout the application

Mechanisms for navigation from task to task are consistently defined and implemented
Mandel [MAN97] defines a set of design principles that help make the interface consistent:

Allow the user to put the current task into a meaningful context. Because of many screens and
heavy interaction, It is important to provide indicators — window tiles, graphical icons, consistent
color coding so that the user knows the context of the work at hand;, where came from and
alternatives of whereto go.

Maintain consistency across a family of applications. For applications or products
!ngplgrctn,entatlon should use the same design rules so that consistency is maintained for all
interaction

If past interactive models have created user expectations, do not make changes unless there is a
compelling reason to do so. Unless a compellm§ reason presents itself don‘t change interactive
sequences that have become de facto standards. (alt-Sto scaling)

USER INTERFACE DESIGN

1.2.1 Interface Design Models
Four different models come into play when a user interface is to be designed.
The software engineer creates a design model,

ahuman engineer (or the software engineer) establishes a user model,

the end-user develops a mental imagethat is often called the user's model or the sysem
perception, and

the implementers of the system create a implementation model.

Therole of interface designer isto reconcile these differences and derive a consi stent representation of
the interface.

User Model: The user model establishes the profile of end-users of the system. To build an effective user
interface, "all design should begin with an understanding of the intended users, including profiles of their age,
sex, physical abilities, education, cultural or ethnic background, motivation, goals and personality”

[SHN9Q]. In addition, users can be categorized as

Novices
Knowledgeable, intermittent users.
Knowledgeable, frequent users.

Page 67

W SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Design Model: A design model of the entire system incorporates data, architectural, interface
and procedural representations of the software.

Mental M odel: The user‘s mental model (system perception) is the image of the system that end-users
carry in their heads.

Implementation M odel: The implementation model combines the outward manifestation of the computer-
based system (the look and fedl of the interface), coupled with all supporting information (books, manuals,
videotapes, help files) that describe system syntax and semantics.

These model s enable the interface designer to satisfy a key element of the most
important principle of user interface design: " Know the user, know the tasks."

1.2.2 The User Interface Design Process. (stepsin interface design)
The user interface design process encompasses four distinct framework activities :
User, task, and environment analysis and modeling

Interface design
I nterface construction
Interface validation

inteface ——tf——— user, task and
validati on environmentanal ysis

(=N
N -

implementation interface design
“—___________

/

N

\

User Interface Design Process

(1) User Task and Environmental Analysis.

The interface analysis activity focuses on the profile of the users who will interact with the
system. Skill level, business understanding, and general receptiveness to the new system are recorded; and
different user categories are defined. For each user category, requirements are dicited. In essence, the
software engineer attempts to understand the system perception (Section 15.2.1) for each class of users.
Once general requirements have been defined, amore detailed task analysis is conducted. Those tasks
that the user performs to accomplish the goals of the system are identified, described, and elaborated

The analysis of the user environment focuses on the physical work environment. Among
the questions to be asked are
Where will the interface be located physically?

Will the user be sitting, standing, or performing other tasks unrelated to theinterface?
Does the interface hardware accommodate space, light, or noise constraints?
Arethere specia human factors considerations driven by environmentd factors?

The information gathered as part of the analysis activity is used to create an analysis model for
the interface. Using thismodel as a basi's, the design activity commences.

Page 68

W SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

(2) Interface Desgn:

The goal of interface design is to define a set of interface objects and actions (and their screen
representations) that enable a user to perform all defined tasks in a manner that meets every usability goal
defined for the system.

(3) Interface Construction(implementation)

The implementation activity normally begins with the creation of a prototype that enables usage
scenarios to be evaluated. Asthe iterative design process continues, a user interface tool kit (Section 15.5)
may be used to complete the construction of the interface.

(4) Interface Validation:
Validation focuses on

(1) the ability of the interface to implement every user task correctly, to accommodate all task
variations, and to achieve all general user requirements;

the degree to which the interface is easy to use and easy to learn; and
the users‘ acceptance of theinterface as a useful tool in their work.

INTERFACE ANALYUSIS
A Key tenet of all software engineering process models is this: you better understand the problem before you attempt
to design a solution. In the case of user interface design, understanding the problem means understanding (1) The
people who will interact with the system through the interface; (2) the tasks that tend-users must perform to do their
work, (3) the content that is presented as part of the inter face, an (4) the environment in which these tasks will be
conducted. In the sections that follow, we examine each of these elements of interface analysis with the intent of
establishing a solid foundation for the design tasks that follow.

12.3.1 User analysis
Earlier we noted that each user has a mental image or system perception of the software that may be different from
the mental image developed by other users.

User Interviews. The most direct approach, interviews involve representatives from the software team who meet
with end-usersto better understand their needs, moativations work culture, and a myriad of other issues. This can be
accomplished in one-on-one meetings or through focus groups.

Sales input. Sales people meet with customers an users on regular basis and can gather information that will help
the software team to categorize users and better understand their requirements.

Marketing input. Market analysis can be invaluable in definition of market segments while providing an
understanding of how each segment might use the software in subtly different ways.

Support input. Support staff talk with users on a daily basis, making them the most likely soured of information on
what works an what doesn‘t, what users like and what they dislike, what features generate questions, and what
features are easy to use.

The following set of questions (adapted form (HAC98)) will help the interface designer better understand the users
of a system:
Are user trained professionals, technicians, clerical or manufacturing workers?

Wheat level of formal education does the average user have?

Arethe users capabl e of learning from written materias or have they ecpressed a desire of
classroom training?

Are users expert typists or keyboard phobic?

What isthe age range of the user community?

Will the users be represented predominately by one gender?

How are users compensated for the work they perform?

Do users work normal office hours, or do they work until thejob is done.

Isthe software to be an integra part of the work usersdo, or will it be used only occasionally?

Page 69

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

What is the primary spoken |anguage among users?

What are the consequences if a user makes amistake using the system?
Are users expertsin the subject matter the is addressed by the system?

Do users want to know about the technology that sits behind the interface?

The answersto these an similar questionswill allow the designer to understand who the end-users are, what islikely
to motivate and please them, how they can be grouped into different user classes or profiled, what their mental
models of the system are, and how the user interface must be characterized to meet their needs.

12.3.2 Task Analysisand M odeling
The goal of talk analysisisto answer the following questions.
What work will the user perform in specific circumstances?

What specific problem domain objects will the user manipulate as work is performed?
What isthe sequence of work tasks-the workflow?
What isthe hierarchy of tasks?

To answer these questions, the software engineer must draw upon analysi s techniques discussed in Chapters 7 and 8,
but in this ingtance, these techniques are applied to the user interface.
In earlier chapter we noted that the use-case describe the manner in which an actor (in the context of user
interface design, an actor is aways a person) interacts with a system.
The use-case provides a basic description of one important work task for the computer-aided design system.
From, it, the software engineer can extract tasks, objects, and the overall flow of the interaction.

Task elaboration. Task analysis of interface design uses an elaborative approach to assist in understanding the
human activities the user interface must accommodate. To understand the tasks that must be performed to
accomplish the goal of the activity, a human engineer must understand the tasks that humans currently perform
(when using a manual approach) and then map these into a similar (but not necessarily identical) set of tasksthat are
implemented in the context of the user interface. Alternatively, the human engineer can study an exigting
specification for computer-based solution and derive a set of user tasks that will accommodate the user modd, the
design model, and the system perception. For example, assume that a small software company wants to build a
computer-aided design system explicitly for interior designers. By observing an interior designer at work, the
engineer notices that interior design comprises a number of major activities: further layout (note the use-case
discussed earlier), fabric and material selection, wall and window coverings selection, presentation (to the customer),
costing, and shopping. Each of these major tasks can be eaborated into subtasks. For example, using information
contained in the use-case, furniture layout can be refined into the following tasks. (1) draw a floor plan based on
room dimensions; (2) place windows and doors at appropriate locations;(3a) use furniture templates to draw scaled
accents on floor plan(4) move furniture outlines;(6) draw dimensions to show location;(7) draw perspective
rendering view for customer. A similar approach could be used for each of the other major tasks.

Object elaboration. The software engineer extracts the physical objects that are used by the interior designer. These
objects can be categorized into classes. Attributes of each class are defined, and an evaluation of the actions applied
to each object provide the designer with alist of operations. For example, the furniture template might trandate into
a class caled Furniture with attributes that might include size, shape, location and others. The interior designer
would select the object from the Furniture class, move it to a position on the floor plan (ancther object in this
context), draw the furniture outline, and so forth. He tasks select, move, and draw are operations. The user interface
anaysis model would not provide a literal implementation for each of these operation for each of these operations.
How ever, asthe design is elaborated, the details of each operation are defined.

Workflow analysis. When a number of different users, each playing different roles, makes uses of a user interface,
it is sometimes necessary to go beyond task analysis and object elaboration and apply workflow analysis. This
technique alows a software engineer to understand how a work process is completed when several people are
involved.
The flow of events (shown in the figure) enable the interface designer to recognize three day interface
characterigtics.
Each user implements different tasks via the interface; therefore, the look and feel of the interface
designed for the patient will be different form the one defined for pharmacists or physicians.

Page 70

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

The interface design for pharmacists and physicians must accommodate access to and display of
information form secondary information sources(e.g., access to inventory of the pharmacist and access to
information about alternative medications for the physician)

Many of the activities noted in the swimlane diagram can be further elaborated using talk analysis and /or
object elaboration(e.g., fills prescription could imply a mail-order deliver, avisit to a pharmacy, or avisit to
a special drug distribution center.

Hierar chical representation. Astheinterface is analyzed, a process of e aboration occurs. Once workflow has been
established, atask hierarchy can e defined for each user type. The hierarchy is derived by a stepwise e aboration of
each task identified for the user. For example, consider the user task requests that a prescription berefilled. The
following task hierarchy is devel oped:
Request that a prescription berefilled

Provide identifying information

Specify name

Specify userid

Specify PIN and password

Specify prescription number

Specify daterefill isrequired
To complete the request that a prescription be refilled tasks, three subtasks are defined. One of these subtasks,
provide indentifying information, is further elaborated in three additional sub-subtasks.

12.3.3 Analysis of Display Content
System response timeis measured from the point at which the user performs some control action(e.g., hitsthe
return key or clicks amouse)until the software responds with the desired output or action.

System response time has two important characteristics: length and variability. If system responseisistoo
long, user frustration and stressisthe inevitableresult. Variability refers to the deviation form average response
time, and, in many ways, it isthe most important response time characteristic. Low variability enables the user to
establish an interaction rhythm, even if response timeisrelatively long. For example, a 1-second response to a
command will often be preferable to a response that varies from 0.1 to 2.5 seconds. When variability is significant,
the user is aways off balance, always wondering whether something -defferentlhas occurred behind the scenes.

Help facilities. Modern software provides on-line help facilities that enable a user to get a question answered or
resolve a problem without leaving the interface. A number of design issues must be addressed when ahelp facility is
considered:
Will help be available for al system functions and at all times during system interaction? Optionsinclude
help for only a subset of all functions and actions or help for all functions.
How will the user request help? Options include ahelp menu, a special function day, or a HEL Pcommand.
How will help be represented? Options include a separate window, areference to a printed document, or a
one-or two-line suggestion produced in a fixed screen location.
How will the user return to normal interaction? Optionsinclude areturn button displayed on the screen, a
function key, or control sequence.
How will help information be structured? Options include a -flatl structure in which all information is
accessed through a keyword, alayered hierarchy or information that provides increasing detail asthe user
proceeds into the structure, or the user of hypertext.
In general, every error message or warning produced by an interactive system should have the
following characterigtics:
The message should describe the problem in language the user can understand.
The message should provide constructive advice for recovering form the error.
The message should indicate any negative consequences of the error(e.g., potentialy corrupted
data files)so that the user can check to ensure that they have not occurred.
The message should be nonjudgmental. That is, the wording should never place blame on the user.
But an-effective error message philosophy can do much to improve the quality of an interactive system and will
significantly reduce user frustration when problems do occur.
A number of design issues arise when typed commands or menu labels are provided as mode of interaction:
Will every menu option have a corresponding command?

Page 71

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

What form will commands take? Options include a control sequence (e.g., at-p), function keys, or

atyped word.

How difficult will it be to learn and remember the commands? What can be doneif a command

isforgotten?

Can commands be customized or abbreviated by the user?

Aremenu labels self-explanatory within the context of theinterface?

Are submenus consistent with the function implied by a master menuitem?
Application accessibility .Accessibility for users and software engineers) who may be physically challenged isan
imperative for moral, legal, and businessreasons. A variety of accessibility guidelines many designed for Web
applications but often applicable to all types of software-provide detailed suggestions for designing interfaces that
achieve vary8ing levels of accessibility. Others provide specific guidelines or -assistive technologyll that addresses
the needs of those with visual, hearing, mobility, speech, and learning impairments.

I nter nationalization. The challenge should be designed to accommodate a generic core of functionality that can
be delivered to all who use the software. Localization features enable the interface to be customized for aspecific
market.

A variety of internationalization guidelines are available to software engineers. These guidelines address broad
design issues and discrete implementation issues. The Unicode standard has been devel oped to address the daunting
chalenge of managing dozens of natural languages with hundred of characters and symbols.

12.5DESIGN EVALUATION

After the design model has been completed, afirst-level prototype is created. The prototype is evaluated by the
user, who provides the designer with direct comments about the efficacy of the interface. In addition, if formal
evaluation techniques are used e.g., questionnaires, rating sheets), the designer may extract information form these
data (e.g., 80percent of all usersdid not like the mechanism for saving data files). Design modifications are made
based on user input, and the next level prototype is created. The eval uation cycle continues until no further
maodifications to the interface design are necessary. If a design model of the interface has been created, a number of
evaluation criteria can be applied during early design reviews:

The length and compl exity of the written specification of the system and itsinterface provide an

indication of the amount of learning required by user of the system.

The number of user tasks specified and the average number of actions per task provide an indication

on interaction time and the overall efficiency of the system.

The number of actions, tasks, and system statesindicated by the design model imply the memory load

on users of the system.

Interface styles, help facilities, and error handling protocol provide a genera indication of the

complexity of the interface and the degree to which it will be accepted by the user.

Once thefirst prototype is built, the designer can collect avariety of qualitative and quantitative data that will
assist in evaluating theinterface. To collect 2qualitaive data, questionnaires can be distributed to users of the
prototype. Questions can be (1) Smple yes/no response, (2) numeric response, (3) scaled (subjective) response,(4)
Likert scales(e.g., strongly.

Users are observed during interaction, and data-such as number of tasks correctly completed over a
standard time period, frequency of actions, sequence of actions, time spent -lookingll at the display, number and
types of errors, error recovery time, time spent using help, and number of help references per standard time
period-are collected and used as a guide for interface modification.

Page 72

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

preliminary
design

prototype #n
interface

build

design
modifications
are made

build
prototype #1
interface

—~\

user
evaluate's
interface

]

f—

evaluation
is studied by
designer

Interface design
s complete

Page 73

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

UNIT-IV

A strategic Approach for Softwaretesting
Software Testing
One of the important phases of software development
Tegting isthe process of execution of a program with the intention of finding errors
Involves 40% of total project cost
Teding Strategy . . .
A road map that incorporates test planning, test case design, test execution and resultant data
collection and execution L .
Validation refersto adifferent set of activities that ensures that the software is traceable to the customer
requirements.
V&V encompasses a wide array of Software Quality Assurance
Perform Formal Technical reviews(FTR) to uncover errors during software development
Begin testing a component level and move outward to integration of entire component based system.
Adopt testing techniques relevant to stages of testing
Testing can be done by software devel oper and independent testing group
Tegting and debugging are different activities. Debugging follows testing
Low level tests verifies small code segments.
High level tests validate major system functions against cusomer requirements

Testing Strategies for Conventional
Software 1)Unit Testing

2) Integration Testing
3)Validation Testing and

4)System Testing

Spiral Representation for
Conventional Software

o —

~
S o YSRY e yinearine ’/
e o A—

Criteria for completion of software testing
No body is absolutely certain that software will not fail
Based on statistical modeling and softwarereliability models

Page 74

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING
95 percent confidence(probability) that 1000 CPU hours of failure free operation is at least 0.995

Software Testing

+ Two major categories of software testing
Black box testing
White box testing

Black box testing
Treats the system as black box whose behavior can be determined by studying itsinput and related
output Not concerned with the internal structure of the program

Black Box Testing
It focuses on the functional requirements of the softwareieit enables the sw engineer to derive
a set of input conditionsthat fully exercise all the functional requirements for that program.

Concerned with functionality and implementation
1) Graph based testing method
2) Equivalence partitioning
Graph based testing
Draw a graph of objects and relations
Devisetest casest uncover the graph such that each object and its relationship exercised.

Page 75

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Directed

\ /\
—— // / Node
ndairecte , / weight
link \ // .

N\

Parallel Links

Equivalence partitioning

Divides all possible inputsinto classes such that there are a finite equival ence classes.
Equivalence class

Set of objects that can be linked by relationship
Reduces the cost of testing
Example
Input consists of 1 to 10
Then classes are n<1,1<=n<=10,n>10

Choose one valid class with value within the allowed range and two invalid classes where
values are greater than maximum value and smaller than minimum value.

Boundary Value analysis

Select input from equival ence classes such that the input lies at the edge of
the equivalence classes

Set of datalies on the edge or boundary of a class of input data or generates the data that lies at
the boundary of a class of output data

Example

If 0.0<=x<=1.0

Then test cases (0.0,1.0) for valid input and (-0.1 and 1.1) for invalid
input Orthogonal array Testing

To problemsin which input domain isreatively small but too large for exhaustive testing
Example

Three inputs A,B,C each having three values will require 27 test cases

L9 orthogonal testing will reduce the number of test case to 9 as shown below

A C

WNNNR R P
R R WP
Wk WWWN P~

Page 76

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

3 2 1

3 3 2

White Box testing
Also called glass box testing
Involves knowing theinternal working of a program
Guarantees that all independent pathswill be exercised at |east once.
Exercises dl logical decisionson ther true and false sides
Executes al loops
Exercises dl data structures for their validity
White box testing techniques
Basis path testing
Control structure testing

Basis path testing
Proposed by Tom McCabe

Defines a basic set of execution paths based on logical complexity of a procedural design

Guarantees to execute every statement in the program at least once
Steps of Basis Path Testing

Draw the flow graph from flow chart of the program

Calculate the cyclomatic complexity of theresultant flow graph
Prepare test cases that will force execution of each path

Three methods to compute Cyclomatic complexity number
V(G)=E-N+2(E is number of edges, N isnumber of nodes
V(G)=Number of regions

V(G)= Number of predicates +1

Control Structure testing

Basis path testing is smple and effective

Itisnot sufficient in itself

Contral structure broadens the basic test coverage and improves the quality of white box testing

Condition Testing
Data flow Testing
Loop Testing

Condition Testing
--Exercise thelogical conditions contained in a program module

--Focuses on testing each condition in the program to ensure that it does contain errors

--Simple condition
El<redation operator>E2
--Compound condition
simple condition<Boolean operator>simple condition

Data flow Testing

Sdlectstest paths according to the locations of definitions and use of variablesin a program

Aimsto ensure that the definitions of variables and subsequent useis tested
Firgt construct a definition-use graph from the contral flow of a program

Loop Testing
Focuses on the validity of loop constructs
Four categories can be defined
Simpleloops
Nested loops
Concatenated |oops
Unstructured loops
Testing of simple loops
-- N is the maximum number of allowable passes through the loop

Page 77

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Skip the loop entirely
Only one pass through the loop
Two passes through the loop
m passes through the loop where
m>N N-1,N,N+1 passes the loop
Nested Loops
Start at the innermost 1oop. Set al other loops to maximum values

Conduct smple loop test for the innermast oop while holding the outer oops at their
minimum iteration parameter.

Work outward conducting tests for the next loop but keeping all other loops at
minimum. Concatenated loops

Follow the approach defined for simpleloops, if each of theloop is independent of other.
If theloops are not independent, then follow the approach for the nested

loops Unstructured Loops

Redesign the program to avoid unstructured

loops Validation Testing

It succeeds when the software functionsin a manner that can be reasonably expected by
the customer.

1) Validation Test Criteria
2)Configuration Review
3)Alpha And BetaTesting
System Testing
Its primary purpose isto test the complete
software. 1)Recovery Testing
2) Security Testing
3Stress Testing and
4)Performance Testing
The Art of Debugging
Debugging occurs as a consegquences of successful testing.
Debugging Stratergies
1)Brute Force Method.
2)Back Tracking 3)Cause
Elimination and
4)Automated debugging
Brute force

Most common and least efficient

Applied when dl elsefails

Memory dumps are taken

Triesto find the cause from the load of information
Back tracking

Common debugging approach

Useful for small programs

Beginning at the system where the symptom has been uncovered, the source code traced
backward until the site of the cause is found.

Page 78

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Cause Elimination
Based on the concept of Binary partitioning
A ligt of all possible causesis devel oped and tests are conducted to eliminate each

Software Quality

Conformance to explicitly stated functiona and performance requirements, explicitly
documented development standards, and implicit characterigtics that are expected of all
professionally devel oped software.

Factors that affect software quality can be categorized in two broad groups:
Factors that can be directly measured (e.g. defects uncovered during testing)
2. Factorsthat can be measured only indirectly (e.g. usability or maintainability)
McCall‘s quality factors
Product operation
Correctness
Reliability
Efficiency
Integrity
Usability
Product Revision
Maintainability
Flexibility
Testability
Product Trangtion
Portahility
Reusability
Interoperability
SO 9126 Quality
Factors 1.Functionality 2.
Reliability
3.Usahility
4. Efficiency
5.Maintainability
6.Portability

Page 79

WL SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING
Maintainability

Flexibility
Testability

PRODUCT REVISION

Porfability
Reusability
Interoperability

PRODUCT TRANSITION

PRODUCT OPERATION

Carrectness Usability

Reliability

Product metrics

Efficiency

Integrity

Product metrics for computer software hel ps usto assess quality.

Measure

Provides a quantitative indication of the extent, amount, dimension, capacity or size of some attribute

of a product or process
Metric(IEEE 93 definition)

A quantitative measure of the degree to which a system, component or process possess a given attribute

I ndicator

A metric or acombination of metrics that provide insight into the software process, a software project

or aproduct itself

Product Metricsfor analysis,Design, Test and maintenance
Product metricsfor the Analysis model

Function point Metric

First proposed by Albrecht

Measures the functionality delivered by the system
FP computed from the following parameters

Number of external inputs(ElS)
Number external outputs(EOS)

Number of externa Inquiries(EQS)
Number of Internal Logical Files(ILF)
Number of externa interface files(EIFS)

RS
<

Each parameter is classified as smple, average or complex and weights are assigned as follows

sInformation Domain Count Simple avg
EIS 3 4
EOS 4 5
EQS 3 4
ILFS 7 10
EIFS 5 7

FP=Count total *[0.65+0.01* E(Fi)]
Metrics for Design Model

Complex
6
7
6
1

10

Page 80

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

DSQI(Design Structure Quality Index)
USair force has designed the DSQI
Compute sl to s7 from data and architectural design
S1:Total number of modules
S2:Number of modules whose correct function depends on the datainput
S3:Number of modules whose function depends on prior processing
SA:Number of data base items
S5:Number of unique database items
S6: Number of database segments
S7:Number of modules with single entry and exit
Calculate D1 to D6 from sl to s7 asfollows:
D1-1if standard design isfollowed otherwise D1=0
D2(modul e independence)=(1-(s2/s1))
D3(module not depending on prior processing)=(1-(s3/s1))
D4(Data base size)=(1-(s5/4))
D5(Database compartmentali zati on)=(1-(s6/s4)
D6(Module entry/exit characteristics)=(1-(s7/s1))
DSQI=sigma of WiDi
i=1to 6,Wi isweight assigned to Di
If sigmaof wi is 1 then all weightsare equal to 0.167
DSQI of present design be compared with past DSQI. If DSQI is significantly lower than
the average, further design work and review are indicated
METRIC FOR SOURCE CODE
HSS(Hal stead Software science)
Primitive measure that may be derived after the code is generated or estimated once design
iscomplete
* nu =thenumber of distinct operators that appear in a program
* nz =thenumber of distinct operandsthat appear in a program
N1=thetotal number of operator occurrences.
N2= the total number of operand occurrence.
Overall program length N can be computed:
N =nilog2 ni1+ nzlog2 nz
V =N logz(ni+ n2)
METRIC FOR TESTING
* m=thenumber of distinct operators that appear in a program
nz2= the number of distinct operands that appear in a program
N:1=thetotal number of operator occurrences.
N2= the total number of operand occurrence.
Program Leve and Effort
PL = /[(n1/ 2) X (N2/ nz 1)]
e=V/PL

METRICS FOR MAINTENANCE
Mt = the number of modulesin the current release
Fe= the number of modulesin the current rel ease that have been changed
Fa= the number of modules in the current rel ease that have been added.
Fa = the number of modules from the preceding release that were deleted in the current rd ease
The Software Maturity Index, SMI, is defined as:
SMI = [Mt-(Fc+ Fa+ Fay Mt]
METRICS FOR PROCESS AND PROJECTS

SOFTWARE MEASUREMENT

Software measurement can be categorized in two ways.
Direct measures of the software engineering process incude cost and effort applied. Direct
measures of the product include lines of code (LOC) produced, execution speed, memory size,
and defects reported over some set period of time.

Page 81

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Indirect measures of the product include functionaity, quality, complexity, efficiency,
reliability, maintainability, and many other "—abilities
Size-Oriented Metrics
Size-oriented software metrics are derived by normalizing quality and/or productivity measures
by considering the size of the software that has been produced.
To develop metrics that can be assimilated with similar metrics from other projects, we choose lines of
code as our normalization value. From the rudimentary data contained in the table, a set of Ssmple size-
oriented metrics can be devel oped for each project:
Errors per KLOC (thousand lines of code).
Defects per KLOC.
$ per LOC.
Page of documentation per KLOC.
In addition, other interesting metrics can be computed:
Errors per person-month.
LOC per person-month.
$ per page of documentation.

Function-Oriented Metrics

Function-oriented software metrics use a measure of the functionality delivered by the application as a
normalization value. Since _functionality* cannot be measured directly, it must be derived indirectly using other
direct measures. Function-oriented metrics were first proposed by Albrecht, who suggested a measure called the
function point. Function points are derived using an empirical relationship based on countable (direct)
measures of software's information domain and assessments of software complexity.

Proponents claim that FP is ggramming language independent, making it ideal for application

using conventiona and nonprocedural languages, and that it is based on data that are more likely

to be kﬂown early in the evolution of a project, making FP more attractive as an estimation

approach.

Opponents claim that the method requires some —sleight of hand | in that computation is

subjective rather than objective data, that counts of the information domain can be difficult

to collect after the fact, and that FP has no direct physical meaning- it‘s just a number.
Typical Function-Oriented Metrics:

errors per FP (thousand lines of code)

defects per FP

$ per FP

pages of documentation per FP

FP per person-month

1.3) Reconciling Different M etrics Approaches

The relationship between lines of code and function points depend upon the
programming language that is used to implement the software and the quality of the design.
Function points and LOC based metrics have been found to be relatively accurate predictors of
software devel opment effort and cost.

1.4) Object Oriented Metrics:
Conventional software project metrics (LOC or FP) can be used to estimate object

oriented software projects. Lorenz and Kidd suggest the following set of metrics for OO projects:
Number of scenario scripts: A scenario script is a detailed sequence of steps that describes the
interaction between the user and the application.
Number of key classes: Key classes are the -highly independent components that are defined early in
object-oriented analysis.
Number of support classes: Support classes are required to implement the system but are not
immediately related to the problem domain.
Average number of support classes per k?/ class: Of the average number of support classes per
key class were known for a given problem domain estimation would be much simplified. Lorenz
and Kidd suggest that applications with a GUI have between two and three times the number of
support classes as key classes.

Page 82

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Number of subsystems: A subsystem is an aggregation of classes that support a function that is
visible to the end-user of a system. Once subsystems are identified, it is easier to lay out a
reasonable schedule in ehic work on subsystems iS partitioned among project staff.

1.5) Use-Case Oriented Metrics

Use-cases describe user-visible functions and features that are basic requirements for a system.
The use-cases is directly proportional to the size of the application in LOC and to the number of use-cases
is directly proportional to the size of the application in LOC and to the number of test cases that will have
to be designed to fully exercise the application.

Because use-cases can be created at vastly different levels of abstraction, there is no andard size
for a use-case. Without a standard measure of what a use-case s, its application as a normalization measure
iS suspect.

1.6) Web Engineering Project Metrics
The objective of all web engineering projectsisto build a Web application that delivers acombination

of content and functionality to the end-user.
Number of static Web pages. These pages represent low relative complexity and generally require
less effort to congtruct than dynamic pages. This measures provides an indication of the overall
size of the application and the ffort required to develop it.
Number of dynamic Web pages. : Web pages with dynamic content are essential in al e
commerce applications, search engines, financial application, and many other Web App
categories. These pages represent higher relative complexity and require more effort to construct
than gtatic pages. This measure provides an indication of the overall size of the application and the
effort required to develop it.
Number of internal page link: Interna page links are pointers that provide an indication of the degree of
architectural coupling within the Web App.
Number of persistent data objects. As the number of persistent data objects grows, the compl exity of the Web
App aso grows, and effort to implement it increases proportionally.
Number of externd systems interfaced: As the requirement for interfacing grows, system complexity and
development effort also increase.]])) _
Number of static content objects. Static content objects encompass static text- based, graphical, video,
animation, and audio information that areincorporated within the Web App.
Number of dynamic content objects: Dynamic content objects are generated based on end-user
actions and éncompass internaly %enerated text-based, graphical, video, animation, and audio
information that are incorporated within the Web App..)))
Number of executable functions: An executable function provides some computational service to
gl1e end-user. As the number of executable functions increases, modeling and construction effort

SO increase,

2) METRICS FOR SOFTWARE QUALITY

The overriding goal of software engineering is to produce a high-quality system, application, or
product within a timeframe that satisfies amarket need. To achieve this goal, software engineers must apply
effective methods coupled with modern tools within the context of a mature software process.

2.1 Measuring Quality

The measures of software qualityare correctness, maintainability, integrity, and usability. These

measures will provide useful indicatorsfor the project team.
Correctness. Correctness is the degree to which the software performs its required function. The
most common measure for correctness is defects per KLOC, where adefect is defined as a verified
lack of conformance to requirements.
Maintainability. Maintainability is the ease with which a program can be corrected if an error is
encountered, adapted if its environment changes, or enhanced if the customer desires a change in
requirements. A simple time-oriented metric is mean-time-tochange (MTTC), the time it takes to
andyze the change request, design an appropriate modification, implement the change, test it, and
distribute the changeto all users.
I ntegrity. Attacks can be made on all three components of software: programs, data, and documents.

Page 83

WY SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

To measure integrity, two additional attributes must be defined: threat and security. Threat isthe
probability (which can be estimated or derived from empirical evidence) that an attack of a specific
type will occur within a given time. Security is the probability (which can be estimated or derived from
empirical evidence) that the attack of a specific type will be repelled. The integrity of

a system can then be defined as

integrity = [1 — threat = (| — security))]
Usability: Usahility isan attempt to quantify user-friendliness and can be measured in terms of four
characteristics:

Defect Removal Efficiency

A quality metric that provides benefit at both the project and process level is defect removal
efficiency (DRE). In essence, DRE isameasure of the filtering ability of quality assurance and
control activities asthey are applied throughout all process framework activities.

When considered for aproject asawhole, DRE is defined in the following

manner: DRE = E/(E + D)
where E isthe number of errors found before delivery of the software to the end-user
and D isthe number of defects found after delivery.

Those errorsthat are not found during the review of the analysis model are passed on to the
design task (wherethey may or may not be found). When used in this context, we redefine DRE as
DRE = Ei/(Ei+Ei+1)

Eiis the number of errors found during software engineering activity i and
Ei+1isthe number of errors found during software engineering activity i+1 that aretraceable to errors
that were not discovered in software engineering activity i.

A quality objective for a software team (or an individual software engineer) isto achieve DRE that

approaches 1. That is, errors should be filtered out before they are passed on to the next activity.

Page 84

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

UNIT-V
RISK MANAGEMENT

REACTIVE VS. PROACTIVE RISK STRATEGIES

At best, areactive strategy monitorsthe project for likely risks. Resources are set aside to deal
with them, should they become actual problems. More commonly, the software team does nothing
about risks until something goes wrong. Then, the team fliesinto action in an attempt to correct the
problem rapidly. Thisis often called a fire fighting mode.

project team reacts to risks when they occur

mitigation—plan for additional resourcesin anticipation of fire fighting

fix on failure—resource are found and applied when the risk strikes o
crisis management—failure does not respond to applied resources and project isin

jeopardy

A proactive strategy beginslong before technical work isinitiated. Potential risks areidentified,
their probability and impact are assessed, and they are ranked by importance. Then, the software team

establishes a plan for managing risk.
formal risk analysisis performed
organization corrects the root causes of risk

0 examining risk sources that lie beyond the bounds of the software
o deveoping the skill to manage change

Risk M anagement Paradigm

—

SOFTWARE RISK

Risk always involves two characterigtics
Uncertainty—the risk may or may not happen; that is, there are no 100% probable risks
Loss—if therisk becomes areality, unwanted consequences or losses will occur.
When risks are analyzed, it isimportant to quantify thelevel of uncertainty in the degree of loss
associated with each risk. To accomplish this, different categories of risks are considered.
Project risksthreaten the project plan. That is, if project risks becomereal, it islikely that project schedule
will slip and that costs will increase.
Technical risks threaten the quality and timeliness of the software to be produced. If atechnical risk
becomes areslity, implementation may become difficult or impossible. Technical risksidentify
potential design, implementation, interface, verification, and maintenance problems.
Businessrisks threaten the viability of the software to be built. Business risks often jeopardize the
project or the product. Candidates for the top five business risks are
Building aexcellent product or system that no onereally wants (market risk),
Building a product that no longer fitsinto the overall business strategy for the company (strategic risk),

Page 85

WL SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Building a product that the sales force doesn't understand how to sell,
Losing the support of senior management due to a change in focus or a changein people
(management risk), and
Losing budgetary or personnel commitment (budget risks).
Known risks are those that can be uncovered after careful evaluation of the project plan, the business
and technical environment in which the project is being developed, and other reliable information sources.

Predictable risks are extrapolated from past project experience.

Unpredictable risks are the joker in the deck. They can and do occur, but they are
extremedly difficult to identify in advance.

2) RISK IDENTIFICATION
Risk identification is a systematic attempt to specify threats to the project plan. There are two distinct
types of risks.
Genericrisksand
product-specific risks.
Genericrisksare apotentia threat to every software project.
Product-specific risks can be identified only by those with aclear understanding of the technol ogy,
the people, and the environment that is specific to the project that isto be built.

Known and predictable risksin the following generic subcategories:
Product size—risks associated with the overall size of the software to be built or modified.
Business impact—risks associated with constraintsimposed by management or the marketplace.
Customer characteristics—risks associated with the sophistication of the customer and the
devel oper's ahility to communicate with the customer in atimely manner.)
Praocess definition—risks associ ated with the degree to which the software process has been defined
and is followed by the development organi zation. o _
Devel opment environment—risks associ ated with the avail ability and qudity of the tools to be used to
build the product.
Technology to be built—risks associated with the complexity of the system to be built and the
"newness"” of the technology that is packaged by the system.
Staff size and experience—risks associated with the overdl technical and project experience of the
software engineers who will do the work.

Assessing Overall Project Risk
The questions are ordered by their relate importance to the success of a project.
Have top software and customer managers formally committed to support the project?
Are end-users enthusiastically committed to the project and the system/product to be built?
Are requirements fully understood by the software engineering team and their customers?
Have customers been involved fully in the definition of regquirements?
Do end-users have realistic expectations?
I's project scope stable?
Does the software engineering team have the right mix of skills?
Are project requirements stable?
Does the project team have experience with the technology to
be Implemented?
I's the number of people on the project team adequate to do the job?
Do all customer/user constituencies agree on the importance of the project and on the requirements
for the system/product to be built?

3.2 Risk Componentsand Drivers
Therisk components are defined in the following manner:

Performance risk—the degree of uncertainty that the product will meet itsrequirements and be fit for
itsintended use.

Cost risk—the degree of uncertainty that the project budget will be maintained.

Support risk—the degree of uncertainty that the resultant software will be easy to correct, adapt,
and enhance.

Schedule risk—the degree of uncertainty that the project schedule will be maintained and that the
product will be delivered on time.

Page 86

SOFTWARE ENGINEERING - Material

SOFTWARE ENGINEERING

The impact of each risk driver on therisk component isdivided into one of four impact categories—
negligible, marginal, critical, or catastrophic.

RISK PROJECTION

Risk projection, also called risk estimation, attempts to rate each risk in two ways—the likelihood or
probability that the risk is real and the consequences of the problems associated with the risk, should it
occur.
The project planner, aong with other managers and technical staff, performs four risk projectionactivities:

establish a scale that reflects the perceived likelihood of arisk,

delineate the consequences of therisk,

estimate the impact of the risk on the project and the product, and

note the overall accuracy of therisk projection so that there will be no misunderstandings.

4.1 Developing a Risk Table
Building a Ris

A project team begins by listing all risks (no matter how remote) in the firgt column of thetable.
Each risk is categorized in Next; theimpact of each risk isassessed.
The categories for each of the four risk components—performance, support, cost, and schedule—
are averaged to determine an overall impact value.
High-probability, high-impact risks percolate to the top of the table, and low-probability risks
drop to the bottom. This accomplishes first-order risk prioritization.
The project manager studies the resultant sorted table and defines a cutoff line.
The cutoff line (drawn horizontally at some point in the table) impliesthat only risks that lie above the line
will be given further attention. Risks that fall below the line are re-evaluated to accomplish second-order
prioritization.
4.2 Assessing Risk Impact

Three factors affect the consequencesthat arelikely if arisk does occur: its nature, its scope, and itstiming.
The nature of the risk indicates the problemsthat are likely if it occurs.
The scope of arisk combinesthe severity (just how seriousisit?) with its overall digtribution.
Finally, the timing of arisk considers when and for how long the impact will be felt.

The overall risk exposure, RE, is determined using the following
relationshipRE=Px C
Where P isthe probability of occurrence for arisk, and C isthe cost to the project should therisk occur.

Risk identification. Only 70 percent of the software components scheduled for reuse will, in fact,
be integrated into the application. Theremaining functionality will have to be custom devel oped.

Page 87

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Risk probability. 80% (likely).
Risk impact. 60 reusabl e software components were planned.
Risk exposure. RE = 0.80 x 25,200 ~ $20,200.

Thetotal risk exposure for all risks (above the cutoff in the risk table) can provide a meansfor adjusting the
final cost estimate for a project etc.

RISK REFINEMENT
One way for risk refinement isto represent the risk in condition-transition-consequence(CTC)
format. Thisgeneral condition can be refined in the following manner:
Sub condition 1. Certain reusable components were developed by a third party with no knowledge
of internal design standards.
Sub condition 2. The design standard for component interfaces has not been solidified and may
not conform to certain exigting reusable components.
Sub condition 3. Certain reusable components have been implemented in alanguage that is not supported
on the target environment.

5) RISK MITIGATION, MONITORING, AND MANAGEMENT
An effective strategy must consider three issues:
Risk avoidance
Risk monitoring
Risk management and contingency planning
If a software team adopts a proactive approach to risk, avoidance is always the best strategy.
To mitigate thisrisk, project management must develop a strategy for reducing turnover. Among
the possible steps to be taken are
Meet with current staff to determine causes for turnover (e.g., poor working conditions, low
pay, competitive job market).
Mitigate those causes that are under our control before the project starts.
Once the project commences, assume turnover will occur and devel op techniques to
ensure continuity when people leave.
Organize project teams so that information about each devel opment activity is widely dispersed.
Define documentation standards and establish mechanisms to be sure that documents
are developed in atimely manner.
Conduct peer reviews of all work (so that more than one person is"up to speedl). » Assign
a backup staff member for every critical technologist.
Asthe project proceeds, risk monitoring activities commence. The following factors can be monitored:
General attitude of team members based on project pressures.
The degree to which the team has jelled.
Interpersonal relati onships among team members.
Potential problems with compensation and benefits
The availahility of jobs within the company and outsideit.
L]
Software safety and hazard analysis are software quality assurance activities that focus on the
identification and assessment of potential hazards that may affect software negatively and cause an entire
system to fail. If hazards can be identified early in the software engineering process, software design
features can be specified that will either eliminate or control potential hazards.

6) THERMMM PLAN

A risk management strategy can be included in the software project plan or the risk management
steps can be organized into a separate Risk Mitigation, Monitoring and Management Plan.

The RMMM plan documents all work performed as part of risk analysis and is used by the
project manager as part of the overall project plan.

Page 88

EE SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Risk monitoring isaproject tracking activity with three primary objectives:
to assess whether predicted risks do, in fact, occur;
to ensure that risk aversion steps defined for the risk are being properly applied; and
to collect information that can be used for futurerisk analysis.

QUALITY MANAGEMENT

1) QUALITY CONCEPTS:

Quality management encompasses
a quality management approach,
effective software engineering technol ogy (methods and toals),
formal technical reviews that are applied throughout the software process,
amultitiered testing strategy,
control of software documentation and the changes madeto it,
a procedure to ensure compliance with software devel opment standards (when applicable), and
measurement and reporting mechanisms.

Variation contral isthe heart of quality control.

Quality

The American Heritage Dictionary defines quality as -a characteristic or attribute of something.ll

Quality of design refersto the characteristics that designers specify for an item.

Quality of conformance is the degree to which the design specifications are followed during

manufacturing.
In software devel opment, quality of design encompasses requirements, specifications, and the design of
the system. Quality of conformance is an issue focused primarily on implementation. If the
implementation follows the design and the resulting system meets its requirements and performance goals,
conformance quality is high.
Robert Glass argues that a more -intuitivel relationship isin order:

User satisfaction = compliant product + good quality + delivery within budget and schedule

1.2 Quiality Contral

Quality control involves the series of inspections, reviews, and tests used throughout thesoftware

process to ensure each work product meets the requirements placed upon it.

A key concept of quality contral isthat al work products have defined, measurabl e specifications to which
we may compare the output of each process. The feedback loop is essential to minimize the defects
produced.

1.3 Quality Assurance

Quality assurance consigs of the auditing and reporting functions that assess the effectiveness and
completeness of quality control activities. The goal of quality assurance isto provide management with the
data necessary to be informed about product quality, thereby gaining insight and confidence that product
quality is mesting its goals.

1.4 Cost of Quality
The cogt of quality includesall costs incurred in the pursuit of quality or in performing quality-
related activities.

Quality costs may be divided into costs associated with prevention, appraisa, and failure.
Prevention costsinclude

quality planning

formal technicd reviews

test equipment

training

Page 89

WL SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Appraisal costsinclude activitiesto gain insight into product condition the —first timethroughl
each process. Examples of appraisal costsinclude

in-process and interprocess inspection

equi pment calibration and maintenance

testing
Failure costs are those that would disappear if no defects appeared before shipping a product to
customers. Failure costs may be subdivided into internal failure costs and external failure costs.
Internal failure costs areincurred when we detect a defect in our product prior to shipment. Interna failure
costsinclude

rework

repair

failure mode analysis
External failure costs are associated with defects found after the product has been shipped to the
customer. Examples of external failure costs are

complaint resolution

product return and replacement

help line support

warranty work

2) SOFTWARE QUALITY ASSURANCE

Software quality is defined as conformance to explicitly stated functiona and performance

requirements, explicitly documented devel opment standards, and implicit characteristicsthat are

expected of all professionally developed software.

The definition serves to emphasize three important points:
Software requirements are the foundation from which quality is measured. Lack of conformanceto
requirementsis lack of quality.
Specified standards define a set of development criteria that guide the manner in which software
isengineered. If the criteriaare not followed, lack of quality will amost surely result.
A set of implicit requirements often goes unmentioned (e.g., the desire for ease of use and good
maintainability). If software conforms to its explicit requirements but fails to meet implicit
requirements, software quality is suspect.

Background | ssues

Thefirst formal quality assurance and control function was introduced at Bell Labsin 1916 and
spread rapidly throughout the manufacturing world. During the 1940s, more formal approaches to quality
control were suggested. These relied on measurement and conti nuous process improvement as key el ements of
quality management.Today, every company has mechanisms to ensure quality in its products.

During the early days of computing (1950s and 1960s), quality was the sole responsibility of
the programmer. Standards for quaity assurance for software were introduced in military contract
software devel opment during the 1970s.

Extending the definition presented earlier, software quality assuranceis a'planned and systematic
pattern of actions' that are required to ensure high quality in software. The scope of quality assurance
responsibility might best be characterized by paraphrasing a once-popular automobile commercial:
"Quality Is Job #1." Theimplication for softwareis that many different constituencies have software
quality assurance responsibility—software engineers, project managers, customers, salespeople, and the
individuals who serve within an SQA group.

The SQA group serves as the customer's in-house representative. That is, the people who
perform SQA must ook at the software from the customer's point of view

2.2 SQA Activities
Software quality assurance is composed of a variety of tasks associated with two different constituencies—
the software engi neers who do technical work and
an SQA group that has responsibility for quality assurance planning, oversight, record keeping, anaysis,
and reporting.
The Software Engineering Ingtitute recommends a set of SQA activities that address quality assurance
planning, oversight, record keeping, analysis, and reporting. These activities are performed (or
facilitated) by an independent SQA group that conducts the following activities.

Page 90

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Prepares an SQA plan for a project. The plan is developed during project planning and is reviewed by
all interested parties. Quality assurance activities performed by the software engineering team and theSQA

group are governed by the plan. The plan identifies
evaluationsto be performed
audits and reviewsto be performed
standards that are applicable to the project
procedures for error reporting and tracking
documentsto be produced by the SQA group
amount of feedback provided to the software project team

Participates in the development of the project’s software process description. The software team
selects a process for the work to be performed. The SQA group reviews the process description for
compliance with organizational policy, internal software standards, externally imposed standards
(e.g., ISO-9001), and other parts of the software project plan.

Reviews softwar e engineering activities to verify compliance with the defined softwar e process. The
SQA group identifies, documents, and tracks deviations from the process and verifies that corrections
have been made.

Audits designated software work productsto verify compliance with those defined as part of the
softwar e process. The SQA group reviews selected work products; identifies, documents, and tracks
deviations; verifies that corrections have been made; and periodically reports the results of its work to
the project manager.

Ensuresthat deviationsin software work and work products are documented and handled
accor ding to a documented procedur e.Deviations may be encountered in the project plan, process
description, applicable standards, or technical work products.

Recor ds any noncompliance and reportsto senior management. Noncompliance items are tracked
until they areresolved.

3) SOFTWARE REVIEWS

Software reviews are a"filter" for the software engineering process. That is, reviews are applied at
various points during software development and serve to uncover errors and defects that can then be
removed. Software reviews "purify" the software engineering activities that we have called analysis,
design, and coding.

Many different types of reviews can be conducted as part of software engineering. Each has
its place. An informal meeting around the coffee machineisaformof review, if technical problemsare
discussed. A formal presentation of software design to an audience of customers, management, and
technical staff isaso aform of review
A formal technical review isthe most effective filter from aquality assurance standpoint. Conducted
by software engineers (and others) for software engineers, the FTR is an effective means for improving
software quality.

3.1 Cost Impact of Softwar e Defects:

The primary objective of formal technical reviewsisto find errors during the process so that
they do not become defects after release of the software.

A number of industry studies indicate that design activities introduce between 50 and 65 percent
of al errors during the software process. However, formal review techniques have been shown to be up to
75 percent effective] in uncovering design errors. By detecting and removing alarge percentage of these
errors, thereview process substantially reduces the cost of subsequent steps in the development and
support phases.

Toillustrate the cost impact of early error detection, we consider a series of relative costs that

are based on actual cost data collected for large software projects Assume that an error uncovered
during design will cost 1.0 monetary unit to correct.
just before testing commences will cost 6.5 units;

Page 91

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

during testing, 15 units;

and after release, between 60 and 100 units.

3.2) Defect Amplification and Removal:
(Thistopic | will tell you later)

FORMAL TECHNICAL REVIEWS
A formal technical review is a software quality assurance activity performed by software
engineers (and others). The objectives of the FTR are
to uncover errorsin function, logic, or implementation for any representation of thesoftware;
to verifythat the software under review meets its requirements,
to ensure that the software has been represented according to predefined standards;
to achieve software that is developed in a uniform manner; and
to make projects more manageabl e.

The Review Meeting

Every review meeting should abide by the following constraints:
Between three and five people (typically) should be involved in thereview.
Advance preparation should occur but should require no more than two hours of work for
each person.
The duration of the review meeting should be less than two hours.

The focus of the FTR is on awork product.

The individua who has devel oped the work product—the producer—informs the project leader that

the work product is complete and that areview is required.
The project leader contacts a review leader, who evaluates the product for readiness, generates
ccr)pl %?atci)g) nproduct materials, and distributes them to two or three reviewers for “advance
Eac reviewer is expected to spend between one and two hours reviewing the product, making notes,

and otherwi se becoming familiar with the work.
The review meeting is attended by the review leader, all reviewers, and the producer. One of the

reviewers takes on therole of the recorder; that is, the individual who records (in writing) all
important issues raised during the review.
At theend of thereview, all attendees of the FTR must decide whether to
accept the product without further modification,
reject the product due to severe errors (once corrected, another review must be performed), or
accept the product provisionaly.
The decision made, all FTR attendees complete a sign-off, indicating their participation in thereview and
their concurrence with the review team'sfindings.

4.2 Review Reporting and Record K eeping
At the end of the review meeting and areview issues|list is produced. In addition, aformal technical review
summary report is completed. A review summary report answers three questions:

What was reviewed?

Who reviewed it?

What were the findings and conclusions?
Thereview summary report is a single page form.
It isimportant to establish afollow-up procedure to ensure that items on the issues list have been properly
corrected.

4.3 Review Guidelines

The following represents aminimum set of guidelines for formal technical reviews:
Review the product, not the producer. An FTR involves people and egos. Conducted properly,
the FTR should leave al participants with awarm feeling of accomplishment.
Set an agenda and maintain it. An FTR must be kept on track and on schedule. The review |leader
is chartered with the responsbility for maintaining the meeting schedule and should not be afraid
to nudge people when drift setsin.

Page 92

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Limit debate and rebuttal. When an issue is raised by a reviewer, there may not be universal
agreement on itsimpact.

Enunciate problem areas, but don't attempt to solve every problem noted. A review is not a
problem-solving session. The solution of a problem can often be accomplished by the producer
alone or with the help of only one other individual. Problem solving should be postponed until
after the review meseting.

Take written notes. It is sometimes a good idea for the recorder to make notes on a wall board, so
that wording and priorities can be assessed by other reviewers asinformation is recorded.

Limit the number of participants and insist upon advance preparation. Kegp the number of
peopl e involved to the necessary minimum.

Develop a checklist for each product that is likely to be reviewed. A checklist heps the review
leader to structure the FTR meeting and helps each reviewer to focus on important issues.
Checkligs should be developed for analysis, design, code, and even test documents.

Allocate resources and schedule time for FTRs. For reviews to be effective, they should be
scheduled as a task during the software engineering process

Conduct meaningful training for all reviewers. To be effective al review participants should
receive some formal training.

Review your early reviews. Debriefing can be beneficial in uncovering problems with the review
processitsalf.

4.4 Sample-Driven Reviews (SDRs):

SDRs attempt to quantify those work products that are primary targets for full FTRs.To accomplish this
the following steps are suggested...

Inspect a fraction ai of each software work product, i. Record the number of faults, fifound within
ai.

+ Develop agross estimate of the number of faults within work product i by multiplying fi by 1/a.
Sort the work products in descending order according to the gross estimate of the number of faults
in each.

Focus available review resources on those work products that have the highest estimated number
of faults.
The fraction of the work product that is sampled must
Be representative of the work product as a whole and
Large enough to be meaningful to the reviewer(s) who does the sampling.

5) STATISTICAL SOFTWARE QUALITY ASSURANCE

For software, statistical quality assurance implies the following steps:
Information about software defectsis collected and categorized.
An atempt is made to trace each defect to its underlying cause (e.g., non-conformance to
specifications, design error, violation of standards, poor communication with the customer).
Using the Pareto principle (80 percent of the defects can be traced to 20 percent of all possible
causes), isolate the 20 percent (the "vital few").
Once the vital few causes have been identified, move to correct the problems that have caused the
For software, satistical quality assurance implies the following steps:

The application of the statisticad SQA and the pareto principle can be summarized in asingle
sentence: spend your time focusing on thingsthat really matter, but first be sure that you understand
what really matters.

5.1 Six Sigma for softwar e Engineering:
Six Sigmaisthe most widely used strategy for statistical quality assurance in industry today.
The term -six sigmal is derived from six standard deviations—3.4 instances (defects) per million
occurrences—implying an extremely high quality standard. The Six Sigmamethodol ogy defines three
core steps:
Define customer requirements and deliverables and project goals via well-defined methods of
customer communication

Page 93

WY SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

Measure the existing process and its output to determine current quality performance (collect
defect metrics)
Analyze defect metrics and determine the vital few causes.
If an existing software process isin place, but improvement is required, Six Sigma suggests two
additional steps.
I mprove the process by eliminating the root causes of defects.
Control the process to ensure that future work does not reintroduce the causes of defects
These core and additional steps are sometimesreferred to asthe DMAIC (define, measure,
analyze, improve, and control) method.
If any organization is devel oping a software process (rather than improving and existing process),
the core steps are augmented as follows:
Design the processto
0 avoid theroot causes of defects and
0 tomeet customer requirements
o Verify that the process model will, in fact, avoid defects and meet customer requirements. This
variation is sometimes called the DMADYV (define, measure, analyze, design and verify) method.

6) THE SO 9000 QUALITY STANDARDS
A quality assurance system may be defined as the organizational structure, responsibilities,
procedures, processes, and resources for implementing quality management
I SO 9000 describes quaity assurance el ementsin generic terms that can be applied to any
business regardless of the products or services offered.
I SO 9001:2000 isthe quality assurance standard that applies to software engineering. The standard
contains 20 requirements that must be present for an effective quality assurance system. Because the
I SO 9001:2000 standard is applicable to al engineering disciplines, a special set of 1SO guidelines have
been devel oped to help interpret the standard for use in the software process.
The requirements delineated by 1SO 9001 address topics such as
management responsibility,
quality system, contract review,
design control,
document and data control,
product identification and traceability,
process control,
inspection and testing,
corrective and preventive action,
control of quality records,
interna quality audits,
training,
servicing and
statistical techniques.
In order for a software organization to become registered to 1SO 9001, it must establish palicies and
procedures to address each of the requirements just noted (and others) and then be able to demonstrate
that these policies and procedures are being followed.

SOFTWARE RELIABILITY
Software reliability is defined in statistical terms as "the probability of failure-free operation of
a computer program in a specified environment for a specified time'.

7.1 Measures of Reliability and Availability:

Most hardware-related reliability models are predicated on failure due to wear rather than failure dueto
design defects. In hardware, failures due to physical wear (e.g., the effects of temperature, corrosion,
shock) are more likely than adesign-related failure. Unfortunately, the opposite istrue for software. In fact,
all software failures can be traced to design or implementation problems; wear does not enter into the
picture.
A simple measure of reliability is meantime-between-failure (MTBF), where

MTBF=MTTF+MTTR

The acronyms MTTF and MTTR are mean-time-to-failure and mean-time-to-repair, respectively.

Page 94

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

In addition to a rdliability measure, we must develop a measure of availability. Software availability is the

probability that a program is operating according to requirements at a given point in time and is defined as
Availability =[MTTFH/(MTTF + MTTR)] 100%

The MTBF reliability measureis equally sensitiveto MTTF and MTTR. The avail ability measure

is somewhat more sensitiveto MTTR, an indirect measure of the maintainability of software.

7.2) Softwar e Safety

Software safety is a software quality assurance activity that focuses on the identification and
assessment of potential hazards that may affect software negatively and cause an entire system tofail.
If hazards can be identified early in the software engineering process, software design features can be
specified that will either eliminate or control potential hazards.
For example, some of the hazards associated with a computer-based cruise control for an automohbilemight
be

causes uncontrolled acceleration that cannot be stopped

does not respond to depression of brake pedal (by turning off)

does not engage when switch isactivated

dowly loses or gains speed

Once these system-level hazards are identified, analysis techniques are used to assign severity and

probability of occurrence.To be effective, software must be analyzed in the context of the entire system.
If aset of external environmental conditionsare met (and only if they are met), the improper position of
the mechanical device will cause a disagtrous failure. Anaysis techniques such as fault tree analysis
[VES81], real-time logic [JANS8E], or petri net models [LEV87] can be used to predict the chain of events
that can cause hazards and the probability that each of the events will occur to create the chain.

Once hazards are identified and anayzed, safety-related requirements can be specified for the
software. That is, the specification can contain alist of undesirable events and the desired system
responses to these events. The role of software in managing undesirable eventsis then indicated.

Although software réiability and software safety are closdy related to one ancther, it is
important to understand the subtle difference between them. Software reiability uses statistical analysisto
determine the likelihood that a software failure will occur. However, the occurrence of a failure does not
necessarily result in ahazard or mishap. Software safety examines the ways in which failures result in
conditions that can lead to a mishap.

Defect Amplification and Removal:

Development step

Defects Detection
Errors passed through
Err?rs fro'm < Percent
revious ste s
3 3 Amplified errors 1 : x 9[3'::::: L Errors passed
detection o next step
Newly generated errors

Defect Amplification M odel
A defect amplification model can be used to illustrate the generation and detection of errors
during the preliminary design, detail design, and coding steps of the software engineering process.
A box represents a software devel opment step. During the step, errors may be inadvertently generated.
Review may fail to uncover newly generated errors and errors from previous steps, resulting in some
number of errors that are passed through. In some cases, errors passed through from previous steps are
amplified (amplification factor, x) by current work. The box subdivisions represent each of these

Page 95

WL SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

characteristics and the percent of efficiency for detecting errors, a function of the thoroughness of
thereview.

Referring to the figure8.3 each test step is assumed to uncover and correct 50 percent of all incoming
errors without introducing any new errors (an optimistic assumption). Ten preliminary design defects are
amplified to 94 errors before testing commences. Twelve latent errors are rel eased to the field.

Figure8.4 considers the same conditions except that design and code reviews are conducted as part
of each development step. In this case, ten initial preliminary design errors are amplified to 24 errors before
testing commences. Only three latent errors exist.

Recalling the relative costs associated with the discovery and correction of errors, overall cost (with
and without review for our hypothetical example) can be established. The number of errors uncovered during
each of the steps noted in Figures 8.3 and 8.4 is multiplied by the cost to remove an error (1.5 cost units for
design, 6.5 cost units before test, 15 cost units during test, and 67 cost units after rel ease).

Using these data, the total cost for devel opment and maintenance when reviews are
conducted is 783 cogt units.
When no reviews are conducted, total cost is 2177 units—nearly three times more

costly.
To conduct reviews, a software engineer must expend time and effort and the development
organization must spend money. Formal technicd reviews (for design and other technical
activities) provide a demongtrable cost benefit. They should be conducted.

FIGURE 8.3
Defect amplification, no reviews

Preliminary design

0 Detail design
10 6
0 0% L 6 Code/unit test
10 41 4xT135 | 5o (3710 10
xwl.5 lEZ 04
27 x 3
25 w3 | 20%
o4 Integration test 25

Validation test
0 50% 47 To integration

System test

4

0 I—— 0 50?.-,—2—L
2 0 50% -2

latent errors

Page 96

SOFTWARE ENGINEERING — Material

SOFTWARE ENGINEERING

FIGURE 8.4
Defect amplification, reviews conducted

Preliminary design

2 Detail design
(&) 70% |22 2 Code/ unit test
10 l—'~ 1e1.5 | 50%22 5
25 lﬁ 10e3 |60% |24
24 Integration test o5
1 Validation test
. 90| System test AT
0 —|—.. 0 50% é
0 —I_, |
(6]

Latent errors

Page 97

