ANURAG ENGINEERING COLLEGE

(An Autonomous Institution)

II Year B.Tech. CSE - II Sem

L T P C 0 0 2 1

(CS406PC) OPERATING SYSTEMS LABORATORY

Prerequisites:

• A course on "Programming for Problem Solving", A course on "Computer Organization and Architecture".

Co-requisite:

• A course on "Operating Systems".

Course Objectives:

The objectives of this course are to provide:

- Analyze system calls that can offer operating system services
- Demonstrate various operating system concepts
- Understand and apply concepts towards new operating system design
- Understand the concept of Dead lock and its avoidance and page replacement algorithms
- Understand Unix commands, system calls

List of Experiments:

- Write C programs to simulate the following CPU Scheduling algorithms

 a) FCFS
 b) SJF
 c) RoundRobin
 d) priority
- 2. Write programs using the I/O system calls of UNIX/LINUX operating system (open, read, write, close,fcntl, seek, stat, opendir, readdir)
- 3. Write a C program to simulate Bankers Algorithm for Deadlock Avoidance and Prevention.
- 4. Write a C program to implement the Producer Consumer problem using semaphores using UNIX/LINUX system calls.
- 5. Write C programs to illustrate the following IPC mechanismsa) Pipes b) FIFOs c) Message Queues d) Shared Memory
- 6. Write C programs to simulate the following memory management techniquesa) Paging b)Segmentation
- 7. Write C programs to simulate Page replacement policiesa) FCFS b) LRU c) Optimal

Text Books:

1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley

2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

Reference Books:

- 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
- 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
- 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

Course Outcomes:

Upon the successful completion of this course, the student will be able to:

- 1. Simulate and implement operating system concepts such as scheduling,
- 2. Able to implement C programs using Unix system calls
- 3. Implement the dead lock avoidance using banker's algorithm
- 4. Implement the producer and consumer problem and Page Replacement algorithms
- 5. Exercise interprocess communication.

CO-PO-PSO Mapping:

	P0-1	PO-2	PO-3	PO-4	PO-5	PO-6	P0-7	PO-8	6-04	PO-10	PO-11	PO-12	PSO-1	PSO-2
CO-1	Н	М	М	L	L							L	М	L
CO-2	М	Н	L	М	L							L	М	L
CO-3	М	L	Η	L	L							М	М	Η
CO-4	Η	М	Η										М	Η
CO-5	Н		М	L	L							L	М	L

H-HIGH M-MODERATE L-LOW