ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, January – 2025

ELECTRICAL CIRCUITS (COMMON TO EEE & ECE)

Time:	3 Hours	Max. Marks: 75		
Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks
1.	Write down the expressions for voltage across the inductor & capacitor.	CO1	L1	2M
2. 3.	What are the differences between series & parallel circuits? State Faraday's laws of electromagnetic induction.	CO1 CO2	L2 L1	3M 2M
4.	What is coefficient of coupling and write its importance in magnetic circuits.	CO2	L2	3M
5.	The equation for an alternating current is given by $i = 77 \sin 314t$. Find the peak value, frequency.	CO3	L2	2M
6. 7.	Define RMS value, average values and form factor. Draw the circuit for series R-L circuit.	CO3 CO4	L1 L1	3M 2M
8.	What is the condition for series resonance? Write the equation for series resonance.	CO4	L1	3M
9. 10.	State Maximum power transfer theorem. Draw the Thevenin's equivalent circuit.	CO5 CO5	L1 L1	2M 3M
Ancirio	Section B (Essay Questions)	(5.3	V 10M -	- 50M)
11. A)	r all questions, each question carries equal marks. State and explain Kirchhoff's laws with an example. OR	CO1	X 10M = L2	10M
В)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO1	L3	10M
	Using mesh analysis calculate current in 10Ω .			
12. A)	Two coupled coils with $L_1 = 0.01$ H and $L_2 = 0.04$ H and $k = 0.6$ can be connected in four different ways such as series aiding, series opposing, parallel aiding and parallel opposing. Find equivalent inductance in each case.	CO2	L3	10M
B)	Derive the expression for coefficient of coupling between pair of magnetically coupled coils.	CO2	L2	10M
13. A)	A Resistor of 100Ω in series with a capacitance of $50\mu F$ is connected to a supply of 200V, 50Hz. Find: (i) impedance (ii) current (iii) phase angle (iv) voltage across the resistor & capacitor. OR	CO3	L3	10M
B)	Derive the expression for average value and RMS value of a sinusoidal wave form.	CO3	L2	10M

14. A)	An RLC Series circuit consists of R=1k Ω , L=100mH, C=10 μ F. If a voltage of 100V is applied across the combination, determine resonant frequency, quality factor and bandwidth.	CO4	L3	10M
	OR			
B)	Explain the locus diagram of series R-C circuit and when C is variable.	CO4	L2	10M
15. A)	State and explain Millman's Theorem with an example. OR	CO5	L2	10M
B)	5 A			
	$\begin{array}{c c} 3\Omega & 5\Omega \\ \hline 4\Omega & 6\Omega \end{array}$	CO5	L3	10M

Find the value of current in 4Ω using Superposition theorem.