ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester supplementary Examinations, January-2025 MATHEMATICS - II

(COMMON TO ALL BRANCHES)

Time: 3 Hours			Max. Marks: 75		
Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks	
1.	Find Laplace Transform of unit step function	CO1	L2	2M	
2.	State and prove second shifting theorem in Laplace Transforms	CO1	L1	3M	
3.	State and prove the symmetry of Beta function	CO2	L1	2M	
4.	Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	CO2	L2	3M	
5.	Write a short note on curl of a vector point function	CO3	L1	2M	
6.	Write three vector point functions which are both solenoidal and irrotational	CO3	L2	3M	
7.	State Gauss divergence theorem	CO4	L1	2M	
8.	$\int \overline{r}.d\overline{r}$ If C is a closed curve, then evaluate c	CO4	L2	3M	
9.	Write the Euler formulae in Fourier series expansion of $f(x)$ in	CO5	L1	2M	
10.	$[c,c+2\pi]$	CO5	L1	3M	
	Write half range Fourier sine series formula for a function in $(0,\pi)$				
Section B (Essay Questions) Answer all questions, each question carries equal marks.			$(5 \times 10M = 50M)$		
11. A)	Evaluate $L^{-1}\left(\frac{s^2}{\left(s^2+a^2\right)\left(s^2+b^2\right)}\right)$	CO1	L3	10M	
B)	Using Laplace Transform, solve $(D^2 + 4D + 5)y = 5$, $y(0)$, $y'(0) = 0$	CO1	L2	10M	
12. A)	Prove that $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$ (m, n are positive real numbers)	CO2	L2	10M	
В)	OR $\int_{0}^{1} \frac{1}{\sqrt{1-x^{4}}} dx$ Evaluate $\int_{0}^{1} \frac{1}{\sqrt{1-x^{4}}} dx$ using Beta and Gamma functions	CO2	L3	10M	
13. A)	Prove that $\nabla f(r) = \frac{f'(r)}{r} \overline{r}$ and hence deduce $\nabla \log r$ OR	CO3	L2	10M	

- By changing the order of integration evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dxdy$ CO3 L3 10M
- 14. A) If $\overline{F} = 4xzi y^2j + yzk$ then evaluate $\int_S \overline{F} \cdot \overline{N} dS$ where S is the cube bounded by x = 0, x = a, y = 0, y = a, z = 0, z = a
 - B) $\oint (3x^2 8y^2) dx + (4y 6xy) dy$ CO4 L2 10M Verify Green's theorem in plane for c where C is the region bounded by $y = \sqrt{x}, y = x^2$
- Find the Fourier series of $f(x) = |\sin x|_{\text{in}} [-\pi, \pi]$ CO5 L3 10M OR
 - Obtain Fourier cosine series of $f(x) = x \sin x$ in $[0, \pi]$ and hence find

 the value of the infinite series $\frac{1}{1.3} \frac{1}{3.5} + \frac{1}{5.7} \dots \infty$