ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, January – 2025

MATHEMATICS - III

(COMMON TO EEE, ECE & CSE)

Time:	3 Hours	Max. Marks: 75			
5	Section – A (Short Answer type questions) r All Questions	Course	B.T	Marks) Marks	
		Outcome	Level	03.7	
1.	What is the general form of the method of false position formula for finding the roots of a function $f(x)$.	CO1	L1	2M	
2.	Apply the bisection method to find an approximation of the root of the function $f(x) = x^2 - 5$ in the interval [2,3] after two iterations.	CO1	L2	3M	
3.	Given the function $f(x) = e^x$, compute the backward difference ∇f at $x = 1$ with a step size of h=0.2.	CO2	L1	2M	
4.	Construct a forward difference table for the following data x 0 10 20 30 y 0 0.174 0.347 0.518	CO2	L1	3M	
5.	State the formula for Trapezoidal rule.	CO3	L1	2M	
6.	Use the Simpson's 3/8 rule to approximate the integral of $f(x) = x^2$ from $x = 0$ to $x = 2$ using 4 equal subintervals.	CO3	L2	3M	
7.	List the steps involved in the Taylor's series method and write the formula used for each iteration.	CO4	L1	2M	
8.	Use Euler's method with h=0.1 to find approximate values of the solution of the initial value problem $y^1+2xy=x^2$, $y(0)=3$ at $x=0.1$.	CO4	L1	3M	
9.	Find $\frac{\partial z}{\partial y}$ for $z=3x^2-2xy+4y^2$.	CO5	L1	2M	
10.	Form the PDE by eliminating the constants a and b from $z=(x^2+a^2)(y^2+b^2)$.	CO5	L2	3M	
	Section B (Essay Questions)				
Answe	r all questions, each question carries equal marks.	(5)	X 10M =	= 50M)	
11. A)	Solve the following system of equations using the LU	CO1	L3	10M	
	Decomposition method: $x+y+z=1$; $4x+3y-z=6$; $3x+5y+3z=4$.				
	OR				
B)	Solve the system of equations using the Gauss-Seidel iteration method: $12x_1+3x_2-5x_3=1$; $x_1+5x_2+3x_3=28$; $3x_1+7x_2+13x_3=76$	CO1	L3	10M	
12. A)	Given a set of points for the function $y=f(x)$, evaluate $f(33)$ using Gauss forward interpolation formulae: x 25 30 35 40 f(x) 0.25 0.3 0.33 0.37	CO2	L3	10M	
В)	Using Lagrange's interpolation formula find y(10) from the following table:	CO2	L3	10M	

13. A)	Fit a straight line of best fit for the following data of heights and weights of students of a school using the least squares method					CO3	L3	10M	
	Height (in cm)	160	162	164	166	168			
	Weight (in kg)	52	55	57	60	61			
	OR								
B)	Determine the constants a and b by the method of least squares such that $y=ae^{bx}$.						CO3	L3	10M
	x 1 y 2	6	3	8	5				
14. A)	Use the Runge-Kutta 4^{th} order method with step size h=0.05to find approximate values of the solution of the initial value problem $y^1+3y=7e^{4x}$, $y(0)=2$ at $x=0.1$							L3	10M
B)	OR Using Adams-Bashforth predictor corrector method find y when $x=0.1$ given $y^1=x-y^2$, $y(0)=1$.							L3	10M
15; A)	From the PDE by eliminating the arbitrary functions $z=f(x^2+3y)+g(x^2-3y)$.							L2	10M
B)	Solve $z=p^2+q^2$.			OR			CO5	L2	10M