ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, January-2025

MATHEAMTICS – I (COMMON TO ALL BRANCHES)

Time: 3 Hours Max. Marks: 75

	Section – A (Short Answer type questions) r All Questions	Course	(25 B.T	Marks) Marks							
11115110	TILL Questions	Outcome	Level								
1.	Define Hermitian and Skew Hermitian matrix.	CO1	L1	2M							
2.		CO1	L1	3M							
	TG 2 2 4 :										
	If $\begin{bmatrix} 3 & x & y \\ -2 & 2 & 4 \\ 7 & 4 & 5 \end{bmatrix}$ is symmetric, then find (x, y) .										
	State Cayley- Hamilton theorem.	CO2	L1	2M							
	Find the eigenvalues of matrix $B = 3A^3 + 5A^2 - 6A + 2I$, where	CO2	L2	3M							
т.	A = $\begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 2 \\ 0 & 0 & -2 \end{bmatrix}$.	002	12	5141							
_		~~~	T 4	03.4							
	State Raabe's test.	CO3	L1	2M							
6.	Test for convergence of $\frac{1}{4n^2-1}$.	CO3	L2	3M							
	$4n^2-1$										
7.	Evaluate $\int_{0}^{1} x^{7} (1-x)^{5} dx$	CO4	L2	2M							
R	Write the geometrical interpretation of the Rolle's theorem.	CO4	L1	3M							
9.	write the geometrical interpretation of the Robe 3 theorem. $\partial r = \partial A$	CO5	L2	2M							
7.	If $x = r \cos \theta$, $y = r \sin \theta$ then find the value of $\frac{\partial r}{\partial x}$ and $\frac{\partial \theta}{\partial y}$.	003	102	2111							
10.	Find the $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial x \partial y}$ if $u = x^3 + y^3 - 3axy$.	CO5	L2	3M							
	Section B (Essay Questions)										
Answei	all questions, each question carries equal marks.	•	X 10M =	= 50M)							
11. A)	$\begin{bmatrix} -1 & -3 & 3 & -1 \end{bmatrix}$	CO1	L2	10M							
	Reduce the matrix $A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$ to Echelon form and										
	$\lfloor -1 1 0 1 \rfloor$										
	find its rank										
	OR										
B)	Discuss for what values of a, b the simultaneous equations	CO1	L2	10M							
/	x + y + z = 6, $x + 2y + 3z = 10$, $x + 2y + az = b$ have (i) no solution										
	(ii) a unique solution (iii) an infinite number of solutions.										

12. A)	Verify	the	Cayley	Hamilton	theorem	and	find	A^{-1}	for	CO2	L3	10M
	[-	-1 -2	2 0									
	A =	1 0	2 .									
		2 3	4									

OR

- B) Find the orthogonal transformation which transform the quadratic CO2 L3 10M form $x^2 + 3y^2 + 3z^2 2yz$ to the canonical form
- 13. A) Examine convergence of the series CO3 L3 10M $1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + ... \infty (x > 0)$.

OR

- B) Examine the following series for absolute and conditional convergent CO3 L3 10M $\frac{1}{5\sqrt{2}} \frac{1}{5\sqrt{3}} + \frac{1}{5\sqrt{4}} \dots + (-1)^n \frac{1}{5\sqrt{n}} + \dots$
- 14. A) Prove that $B(m,n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$.

OR

- B) State Lagrange Mean theorem. Using it Prove that CO4 L3 10M $\frac{\pi}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}.$
- Show that the functions $u = \frac{x^2 y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally related. Find the relation between them

OR

B) Find the volume of the rectangular parallelepiped that can be CO5 L3 10M inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{z^2} = 1$.