ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, January – 2025

APPLIED PHYSICS (COMMON TO ECE & CSE)

Time: 3 Hours Max. Marks: 75				
Section – A (Short Answer type questions)			(25	Marks)
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	What is Huygen's principle?	CO1	L1	2M
2.	What are the differences between Fraunhoffer and Fresnel	CO1	L1	3M
	diffraction?			
3.	Explain the working principal of optical fiber.	CO2	L2	2M
4.	What are the important components of laser?	CO2	L1	3M
5.	Explain the drawbacks of classical free electron theory.	CO3	L2	2M
6.	What is deBroglie hypothesis? Mention the few properties of matter	CO3	L1	3M
	waves.			
7.	Compare between conductors, semiconductors and insulators.	CO4	L2	2M
8.	Write a short note on Extrinsic semiconductors	CO4	L2	3M
9.	Explain Direct and Indirect band gap semiconductors.	CO5	L2	2M
10.	What are the applications of Photodiodes?	CO5	L1	3M
10,	, had all approximate of a more electric.			
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		(5)	X 10M =	= 50M)
11. A)	Explain in brief Newton's rings experiment and obtain an expression	CO1	L3	10M
	for radius of curvature of a given Plano convex lens.			
	OR			
B)	Discuss in detail Fraun hoffer diffraction at single slit.	CO1	L3	10M
ĺ				
12. A)	Derive the equation for numerical aperture and acceptance angle	CO2	L3	10M
	with neat diagram OR			
רם.	-	CO2	L2	10M
B)	Explain the construction and working principal of He-Ne laser.	CO2	L2	TUIVI
12 (1)	Deduct an expression for density of energy states	CO3	L3	10M
13. A)	OR	003	LJ	10101
B)	Discuss the experimental evidence for the existence of matter waves	CO3	L3	10M
ы)	by using Davisson and Germer experiment.	COS	113	10141
	by using Davisson and Germer experiment.			
14. A)	Discuss the sailent features of Kronig -penney model of a crystal.	CO4	L3	10M
14. A)	Discuss the origin of energy band structure in solids.	CO4	LJ	10141
	OR			
B)	Determine the Expression for carrier concentration in Intrinsic	CO4	L3	10M
В)	semiconductors by applying the Fermi Dirac function.	CO4	LJ	10111
	senificonductors by apprying the Ferrir Dirac function.			
15. A)	Explain the formation of p-n junction diode with the characteristic	CO5	L2	10M
13. A)	curves.	003		10171
	OR			
В)	With neat diagram explain the construction and working of LED.	CO5	L3	10M
D)	Mention few applications.			1 0111
	1170TIMOTI TALL ADDITIONS			