ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, January – 2025

MATHEMATICS - II

(COMMON TO ALL BRANCHES)

Time:	3 Hours	Ma	x. Mar	ks: 75		
Section – A (Short Answer type questions) Answer All Questions		Course	B.T	— Marks) Marks		
1	Solve $(2x - y + 1)dx + (2y - x - 1)dy = 0$	Outcome CO1	Level L3	2M		
1. 2.	Find Integration factor of non-exact DE $x^2ydx - (x^3 + y^3)dy = 0$	CO1	L1	3M		
3.	Find Particular Integral of DE $(D^2 + 6D + 9)y = 2e^{-3x}$	CO2	L1	2M		
4.	Find particular integration of $(D^2 + 1)y = Sinx Sin2x$	CO2	L1	3M		
5.	Evaluate $\int_0^2 \int_0^x e^{x+y} dy dx$	CO3	L1	2M		
	- 0 - 0	CO3	L1	3M		
6.	Evaluate $\int_0^1 \int_1^2 \int_2^3 x y z dx dy dz$					
7.	Prove that $\operatorname{div} \operatorname{Curl} \bar{f} = 0$	CO4	L1	2M		
8.	If $\bar{f} = (x+3y)\bar{\imath} + (y-2z)\bar{\jmath} + (x+pz)\bar{k}$ is a solenoidal vector then find value of p.	CO4	L1	3M		
9.	State Green's theorem	CO5	L1	2M		
10.	Compute the line integral $\oint_C (y^2 dx - x^2 dy)$ where C is the boundary of the triangle whose vertices are $(1, 0)$, $(0, 1)$ & $(-1, 0)$ in XY-Plane.	CO5	L2	3M		
Section B (Essay Questions)						
Answ	er all questions, each question carries equal marks.	•	X 10M =	-		
11. A)	Solve $x \frac{dy}{dx} + y = x^3 y^6$	CO1	L3	10 M		
	OR If the temperature of a body drops from 100°C to 70°C in 15 minutes, then find when the temperature will be 40°C. If the temperature of the air is 30°C.	CO1	L3	10M		
12. A)	Solve $(D^2 - 2D + 2)y = e^x + Cos x + x^2 - 5$	CO2	L3	10M		
B)	Solve $(D^2 + 4)y = Cosec 2x$ by using the method of variation of parameters.	CO2	L3	10M		
13. A)	Evaluate $\int \int (x+y) dx dy$ over the region in the positive quadrant bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	CO3	L3	10M		
D)	OR	CO2	т 2	101/		
Б)	Evaluate $\int_0^{\log 2} \int_0^x \int_0^{x+y} e^{x+y+z} dz dy dx$	CO3	L3	10M		
14. A)	i) Find the directional derivative of $x^2yz + 4xz^2$ at the point $(1,2,-1)$ in the direction of the normal to the surface $(x \log z - x^2)$	CO4	L3	5M		
	y^2) at $(-1, 2, 1)$ ii) Prove that $Curl(\bar{a} \times \bar{b}) = \bar{a} div\bar{b} - \bar{b} div\bar{a} + (\bar{b}.\nabla)\bar{a} - (\bar{a}.\nabla)\bar{b}$ OR			5M		
B)	i) Evaluate the angle between the normal vectors to the surface $xy=z^2$ at the points $(4,1,2)$ and $(3,3,-3)$.	CO4	L3	5M		
	ii) Prove that $\nabla(r^n) = n r^{n-2} \bar{r}$			5M		

15. A)	Evaluate $\iint_S \overline{F} \cdot \overline{n} ds$ if $\overline{F} = yz \overline{\iota} + 2y^2 \overline{\jmath} + xz^2 \overline{k}$ and S is the surface of the cylinder $x^2 + y^2 = 9$ contained in the first octant between the planes z=0 and z=2.	CO5	L3	10M
	OR			
B)	Verify Gauss's Divergence theorem for	CO5	L3	10M
	$\overline{F} = (x^3 - yz)\overline{t} - 2x^2y\overline{t} + z\overline{k}$ taken over the surface of the cube			
	bounded by the planes $x = y = z = a$ and coordinate planes.			