ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, December – 2024
DISCRETE MATHEMATICAL STRUCTURES
(COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours	Max. Marks: 75

		1120	280 112002 2	1100
	Section – A (Short Answer type questions) r All Questions	Course Outcome	(25 B.T Level	Marks) Marks
1.	Define i. Rule of syllogism ii. Rule of detachment	CO1	L1	2M
2.	Let $A = \{1,2,3,4\}$, then write all possible subsets of A	CO1	L2	3M
۷.	Let $A = \{1,2,5,4\}$, then write an possible subsets of A	COI	L2	3111
3.	Obtain principal conjunctive normal form (PCNF) for the formula $(\sim p \rightarrow r) \Lambda (q \leftrightarrow p)$	CO2	L2	2M
4.	Construct the truth tables of the following compound proposition $(p \land q) \rightarrow r$	CO2	L2	3M
5.	Write the characteristic roots equation for an+3an-1+4an-2-8an3=0, n>=3	CO3	L2	2M
6.	Explain generating function and give the generating function for the sequence 12,22,32	CO3	L2	3M
7.	Define what is a group?	CO4	L1	2M
8.	Define a lattice. Explain its properties	CO4	L2	3M
9.	What is a spanning tree? Give an example	CO5	L1	2M
10.	Explain about Graph colouring?	CO5	L2	3M
11. A)	Section B (Essay Questions) r all questions, each question carries equal marks. Let $X=\{1,2,3\}$ and f, g, h and s be functions from X to X given by $f=\{(1,2), (2,3), (3,1)\}, g=\{(1,2), (2,1), (3,3)\}$ h= $\{(1,1), (2,2), (3,1)\}$ Find fog, fohog.	CO1	L3	= 50M) 10M
В)	Suppose a list A contains 30 students in a mathematics class, and a list B contains 35 students in an English class and suppose there are 20 names on both the lists. Find the number of students: (i) Only on list A (ii) only on list B (iii) on list A or B (or both) (iv) on exactly one list	CO1	L2	10M
12. A)	What are universal and existential quantifiers. Symbolize the following argument and check for its validity: All Lions are dangerous animals. There are Lions. Therefore, there are dangerous animals OR	CO2	L2	10M
B)	Show that the following premises are inconsistent $P \rightarrow Q$, $R \rightarrow S$, PVR , $\sim (QVS)$	CO2	L3	10M

13. A)	Solve the recurrence relation $a_n=2a_{n-1}+3a_{n-2}$ for $n\ge 2$ where $a_0=2$ and $a_1=2$.	CO3	L2	10M
B)	Using generating function find an in terms of n if $a_0=1$, $a_1=2$, and $a_{n+2}=5a_{n+1}-4a_n$ for $n\ge 0$.	CO3	L3	10M
14. A)	Draw the adjacency matrix of the relation <= on the set (0,1,2,3,4). Is this matrix reflexive? Explain. And also draw the graph. OR	CO4	L3	10M
В)	Show that the relation \subseteq defined on the power set P(B) of the set B is a partial order relation. For the set B= $\{a,b,c\}$ and X=P(B), draw the Hasse diagram for the poset (X,\subseteq) .	CO4	L3	10M
15. A)	A Connected planar graph has 9 vertices having degrees 2,2,2,2,3,3,3,4,4,5. How many edges are there? How many faces are there?	CO5	L3	10M
70.	OR	G0.5	× 0	53.5
B)	i) Prove that a complete graph K_n is planar if and only if $n \le 4$. ii) Prove that a tree with n vertices has $(n-1)$ edges	CO5	L3	5M 5M