ANURAG Engineering College

(An Autonomous Institution)

II B.Tech. I Semester Supplementary Examinations, December – 2024 PROBABILITY THEORY AND STOCHASTIC PROCESSES (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time:	3 Hours		ax. Ma	rks: 75
Section – A (Short Answer type questions)			(25	Marks)
Answer All Questions		Course	B.T	Marks
14115	7.111 Q 11001010	Outcome	Level	
1.	Write the axioms of Probability.	CO1	L1	2M
2.	Discuss the set, sample space and mutually exclusive events with an	CO1	L2	3M
	example.			
3.	What are the conditions for a function to be random variables?	CO2	L1	2M
4.	Define the variance and skew?	CO2	L1	3M
5.	What is the meaning of statistical independence.	CO3	L1	2M
6.	Define the expected value of a function of random variable/	CO3	L1	3M
7.	Define random process and write example?	CO4	L1	2M
8.	Discuss about the WSS and SSS.	CO4	L2	3M
9.	Write the Statement of wiener-Khinchin relation.	CO5	L1	2M
10.	Define the SNR?	CO5	L1	3M
20.				
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		(5)	X 10M :	= 50M)
	Explain Joint and Conditional Probability.	CO1	L2	10M
	OR			
B)		CO1	L3	10 M
	Gaussian distribution for which mean is 30 m and standard deviation			
	is 5m. In a qualify in ground, contestants must throw farther than 27m			
	to qualify. In the main event the record throw is 44m.			
	i) What is the probability of being disqualified in the first round?			
	ii) In the main event what is the probability the record will be broken.			
10 4)	Device the appropriate of much chility density fraction	CO2	L3	10M
12. A)	Derive the properties of probability density function. OR	CO2	L3	TOIVI
D)	400 () 0 2 0 4 70 4	CO2	L3	10M
B)	and b such that (i) $P\{X=a\} = P\{X>a\}$ and (ii) $P\{X>b\} = 0.05$.	COZ	ديد	10111
	and b such that (1) $\Gamma\{X-a\} - \Gamma\{X/a\}$ and (11) $\Gamma\{X/b\} = 0.05$.			
13. A)	Distinguish between joint distribution and marginal distribution.	CO3	L3	10M
12.11)	OR			
B)	Explain the transformations of multiple random variables.	CO3	L2	10M
14. A)	Explain WSS and SSS for a random process.	CO4	L2	10M
1 10 11)	OR			
B)	Telephone calls are initiated through an exchange mean average rate	CO4	L3	10M
	of 75 per minute and are described by a poisson process. Find the			
	probability that more than 3 calls are initiated in any 5 seconds			
	period.			
	r			

15. A)	A random process has the power density spectrum $S_{XX}=6\omega^2/(1+\omega^4)$ Find the average power in the process.	CO5	L3	10M
	rind the average power in the process.			
	OR			
B)	Explain the different types of noises?	CO5	L2	10M