ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, December – 2024 SIGNALS AND SYSTEMS

(ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 75

Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks		
1.	Define orthogonal vector spaces and signal spaces.	CO1	L1	2M		
2.	Describe the importance of Fourier series in signal analysis.	CO1	L2	3M		
3.	List some standard signals and their Fourier Transforms.	CO2	L1	2M		
4.	State the Sampling Theorem and explain its importance in signal processing.	CO2	L2	3M		
5.	Differentiate between Linear Time-Invariant (LTI) and Linear Time-Variant (LTV) systems.	CO3	L2	2M		
6.	Discuss the ideal characteristics of low-pass (LPF), high-pass (HPF), and band-pass (BPF) filters?	CO3	L2	3M		
7.	State Parseval's theorem and explain its importance in signal analysis.	CO4	L2	2M		
8.	Explain the concept of convolution in the frequency domain.	CO4	L2	3M		
	Describe the concept of waveform synthesis in Laplace Transforms.	CO5	L2	2M		
	How are the discrete-time signals represented using complex exponential and sinusoidal signals?	CO5	L1	3M		
Section B (Essay Questions)						
Answei 11. A)	r all questions, each question carries equal marks. Derive the formula for the approximation of a function using a set of orthogonal functions.	CO1	X 10M = L3	= 50M) 10M		
	OR					
B)	Compute the Trigonometric Fourier coefficients for the periodic function $f(x)=x$ over the interval $[-\pi, \pi]$.	CO1	L3	10M		
12. A)	Discuss the properties of Fourier Transforms such as linearity, time-shifting, and frequency-shifting, with proofs. OR	CO2	L2	10M		
B)	Derive the Fourier Transform of the signal $f(t)=e^{-at}u(t)$, where $a>0$.	CO2	L3	10M		
13. A)	Analyze the ideal characteristics of LPF, HPF, and BPF. Why are ideal filters practically unrealizable? OR	CO3	L3	1 0M		
B)	Design an ideal LPF with a cut-off frequency of 1 kHz and plot its magnitude response.	CO3	L3	10M		
14. A)	Derive and explain the mathematical expressions for cross-correlation and auto-correlation.	CO4	L3	10M		

B)	Calculate the energy density spectrum of $x(t)=e^{-t^2}$ and verify Parseval's theorem for this signal.	CO4	L3	10M
15. A)	Determine the Laplace Transform of a periodic square wave with a period T .	CO5	L3	10M
	OR			
B)	Show the relationship between the Z-Transform and the Fourier Transform for $z=e^{j\omega}$.	CO5	L3	10M