ANURAG Engineering College

(An Autonomous Institution)

II B.Tech. I Semester Supplementary Examinations, December - 2024 **ELECTRICAL CIRCUIT ANALYSIS**

(ELECTRICAL AND ELECTRONICS ENGINEERING)

examples.

in figure.

Time: 3 Hours		Max. Marks: 75		
Section – A (Short Answer type questions)		(25 Marks)		
Answei	r All Questions	Course	B.T	Marks
	(Outcome	Level	
1.	What are the uses of source transformation?	CO1	L1	2M
2.	State compensation theorem.	CO1	L1	3M
3.	Derive transient response for R-L circuit using AC excitation	CO2	L2	2M
4.	Find Laplace transform of $f(t) = \cos 2t + e - 3t$, $t > 0$	CO2	L2	3M
5.	Write the circle equation of RL circuit with R variable.	CO3	L2	2M
6.	A series circuit has R=4 ohms, L=25 mH, and C=150 μ F. What is the bandwidth?	CO3	L2	3M
7.	Derive expressions for transmission parameters of two two-port networks connected in cascade.	CO4	L2	2M
8.	Derive the expression for Y parameters in terms of ABCD parameters.	CO4	L2	3M
9.	What are the properties of tie-set matrix?	CO5	L1	2M
10.	Define the following terms	CO5	L2	3M
	i) Graph ii) Link iii) Tree			
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$		
	i) State and explain Maximum power transfer theorem.	CO1	L2	4M
ŕ	ii) For the periodic wave form shown in the following figure, determine average and rms value, form factor.	CO1	L3	6M
	10V 10V -4 -2 0 3 4 6 1			
	OR			
B)	i) Describe Ideal current source and Ideal voltage sources with	CO1	L2	4M

ii) Determine the current Io in 1 Ohm resistor of the circuit shown

12. A) i) Determine the transient current through a series R-C circuit when CO₂ L2 5M it is connected to a sinusoidal voltage source. ii) In a series RLC circuit, R=6 ohms, L=2 H, C=2 F. A DC voltage CO₂ L3 5M of 50 V is applied at t=0. Obtain the expression for i(t) using differential equation approach.

CO1

L3

6M

L3

OR

B) In a series RLC circuit L=0.3 H, and C=4 F. A DC voltage of 50 V is applied at t=0. Obtain an expression for current i(t) in the circuit, when (i) $R=5 \Omega$ (ii) $R=6 \Omega$.

13. A) i) Illustrate the concept of resonance.

CO₃

CO₂

L2 4M 6M

10M

ii) A series RLC circuit has the following parameter values $R=10\Omega$, L=0.01 H and C= 10 μ F. Find the Q factor of the circuit at resonance.

L3 CO₃

B) A voltage of $V = 270 \angle 0^0$ V is applied to a series circuit of fixed resistance R = 8 ohms and a variable capacitance C. Sketch the admittance and current locus diagrams.

CO₃ L3 10M

14. A) i) Classify filters in detail.

- CO₄ L2 4M
- ii) For the following network shown in below Figure. Determine hparameters.

CO₄

CO₅

L₂

4M

6M

L3 6M

B) For the two port network given below, Determine Y and ABCD CO₄ L3 10M parameters.

- using a single watt meter. ii) For the network shown in figure, obtain the oriented graph of the L3 CO5 network. Write the cut-set matrix of the graph and determine the loop currents. All the values of resistances in the circuit are in ohms.

15. A) i) Explain the measurement of power in a balanced 3-phase system

B) For the network shown in figure 3(a) draw the graph and show some CO₅ L3 10M possible trees.

