ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, December - 2024

CONTROL SYSTEMS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3 Hours Max.Marks:75

Section – A (Short Answer type questions)			(25 Marks)			
Answer All Questions		Course	B.T	Marks		
	•	Outcome	Level			
1.	Illustrate the factors get affected by feedback in control systems.	CO1	L2	2M		
2.	Define the following terms.	CO1	L1	3M		
	i) Source node ii) Non touching loops iii) Forward path					
3.	The damping ratio of system is 0.6 and the natural frequency of	CO2	L2	2M		
	oscillation is 8 rad/sec. determine the rise time.					
4.	Examine the effects of PI, PD controllers in a system.	CO2	L2	3M		
5.	Analyse the effects of adding poles and zeros to a system.	CO3	L2	2M		
6.	List out the steps involved in root locus technique.	CO3	L1	3M		
7.	Define Gain margin and Phase Margin.	CO4	L1	2M		
8.	Sketch the polar-plot for Type-2, Order-4 system.	CO4	L2	3M		
9.	Sketch the state diagram for state space model.	CO5	L2	2M		
10.	Define homogeneous state equation and give the solution of	CO5	L1	3M		
	homogeneous state equations.					
Section B (Essay Questions)						
Answei	$(5 \times 10M = 50M)$					

11. A) Determine the closed loop transfer function for the given signal CO₁ L3 flow graph.

 $s^4 + 8s^3 + 18s^2 + 16s + 5 = 0$

	OR			
B)	Explain about open loop and closed loop systems with one example.	CO1	L3	10M
12. A)	Determine the step, ramp and parabolic error constants of the unity feedback control system with the given open loop transfer function $G(S) = \frac{10}{S(1+0.1S)(1+10S)}$	CO2	L3	10M
	OR			
B)	Analyze the first order system response for unit step signal as an input.	CO2	L3	10M
13. A)	Using Routh Hurwitz criterion, determine the stability of the system represented by the characteristic equation	CO3	L3	10M

OR

10M

- B) Sketch the root-locus of the system whose open-loop transfer CO3 L3 10M function is $G(S) = \frac{K}{S(S+1)(S+2)}$.
- 14. A) Draw the electrical circuit diagram that represents the Lead compensator and explain in detail.

OR

- B) Construct the Nyquist-plot for given open loop transfer function CO4 L3 10M $G(S) = \frac{K}{S(S+2) (S+10)}.$ Determine the range of K for which closed loop system is stable.
- 15. A) Determine the transfer matrix for MIMO system given by CO5 L3 10M $\dot{X}(t) = AX(t) + BU(t) ; \quad Y(t) = CX(t) + DU(t) \text{ where }$ $A = \begin{bmatrix} 0 & 3 \\ -2 & -5 \end{bmatrix}; B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}; C = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}; D = [0].$
 - B) Define state transition matrix. Obtain state transition matrix if CO5 L3 10M $A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$