ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, December-2024 FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours Max. Marks: 75						
Section – A (Short Answer type questions) Answer All Questions			(25 Marks) Course B.T Mar			
		Outcome	Level	ks		
1.	Define Finite Automata.	CO1	L2	2M		
2.	Explain structural representation of Finite Automata.	CO1	L4	3M		
3.	What is Regular Expression?	CO2	L4	2M		
4.	What is the relation between Finite Automata and Regular expression?	CO2	L3	3M		
5.	Define Context Free Grammar.	CO3	L5	2M		
6.	What are the applications of Pumping Lemma?	CO3	L1	3M		
7.	What are the applications of Context Free Grammar?	CO4	L1	2M		
8.	Differentiate between Push Down Automata and Turing Machine.	CO4	L1	3M		
9.	List the different models in Turing Machine?	CO5	L2	2M		
10.	What are the required fields of an instantaneous description of a Turing machine?	CO5	L1	3M		
	Section B (Essay Questions)					
Answ	ver all questions, each question carries equal marks.	(5 X 10	$\mathbf{M} = 5$	0 M)		
	Differentiate between DFA and NFA with Examples.	CO1	L3	10M		
A)	Differentiate between DITI and IVIII with Diampies.	001	2.2	10111		
11)	OR					
B)	Convert the following NFA to DFA	CO1	L3	10M		
	q_0 a q_1 b q_2					
12.	i) Define Moore Machine. Explain with example.	CO2	L2	10M		
A)	ii) List out the decision properties of Regular Language.					
11)	OR					
B)	Define Pumping Lemma. List the applications of pumping lemma.	CO2	L2	10M		
13.	Consider the following productions	CO3	L3	10M		
A)	S -> aB bA	003	113	10111		
Λ)	$A \rightarrow a \mid aS \mid bAA$					
	B -> b bS aBB					
	Derive aaabbabbba using Left Most Derivation& Draw Parse tree. OR					
B)	Consider the following productions	CO3	L3	10M		
Dj	$E \rightarrow E+T/T$	000		2 0112		
	$T \rightarrow T*F/F$					
	F-> (E)/ID					
	Derive id+id*id using Left Most Derivation & Right Most Derivation.					
	Delive id tid to deling best whost Delivation of Taght whost Delivation.					
14.	List the steps to convert CFG to PDA.	CO4	L3	10M		
A)	Dist the steps to contract of a to 1 Dir.	001		X 3111		
13.)	OR					
B)	Construct a Push Down Automata for the language $L=\{a^nb^n n>=0\}$.	CO4	L3	10M		
2)	A CALLES TO A LIVE T TANADAM TOT 1114 TANADAM DA TA (M. A. 12 A.)					

15. i) Explain in detail about the types of Turing Machine.

CO5

L2 10M

A) ii) Write a shot notes on post's correspondence problem and check the following is PCP or not.

I	Α	В
1	11	111
2	100	001
3	111	11

OR

B) What is Turing Machine and Multi tape Turing Machine? Show CO5 L3 10M that the languages accepted by thesemachines are same.