ANURAG Engineering College

(An Autonomous Institution)

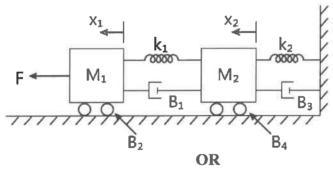
II B.Tech II Semester Supplementary Examinations, December-2024

CONTROL SYSTEMS

(ELECTRONICS AND COMMUNICATIONS ENGINEERING)

Time: 3 Hours Max. Marks: 75

Section – A (Short Answer type questions)		(25 M		Marks)
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	What are the merits and demerits of closed loop control systems.	CO1	L1	2M
2.	State and explain the Mason's gain formula	CO1	L2	3M
3.	What is the difference between type and order of a system?	CO2	L1	2M
4.	what is meant by steady state error.	CO2	L1	3M
5.	What are the difficulties faced while applying R-H criteria?	CO3	L1	2M
6.	What are the advantages of frequency response analysis?	CO3	L1	3M
7.	What is polar plot?	CO4	L1	2M
8.	What is lead compensation? Outline the pole zero diagram of lead compensator	CO4	L2	3M
9.	Define state transition matrix?	CO5	L1	2M
10.	Write the general procedure to determine the state space models of a control system.	CO5	L1	3M
Section B (Essay Questions) Answer all questions, each question carries equal marks. (5 X 10M = 50M)				


Answer all questions, each question carries equal marks.

11. A) i) Examine the effect of feedback system

 $(5 \times 10M = 50M)$

ii) Write the differential equations governing the Mechanical system shown in fig. and obtain overall transfer function

CO1 L3 5M 5M

- B) i) Analyse the principle of operation of synchro transmitter and CO1 L3 5M receiver?

 ii) Derive the transfer function of an AC Servo motor with neat diagram
- 12. A) i) Sketch the response of second order system for critically damped CO2 L3 5M case and when input is unit step.

 ii) Derive the expressions for peak time and settling time of a standard second order under damped system.

 OR

B) What are the standard test signals and Analyse the time response of CO2 L3 10M first order system when inputs are standard test signals,

13. A)	Sketch the root locus diagram for a feedback system. The characteristic equation of which is given by, $G(S)H(S) = \frac{K}{S(S+2)(S^2+2S+2)}$ Show clearly the steps involved	CO3	L3	10M		
B)	i) Describe the Routh's criteria with an example. What are its	CO3	L3	5M		
	limitations? ii) derive the expression for bandwidth			5M		
14. A)	Sketch the Nyquist plot for the closed loop system, whose open- loop transfer function is given as $G(S) = \frac{K}{S(S+1)(S-1)}$ Determine the stability of open loop and closed loop systems?	CO4	L3	10M		
D)	OR	an'i	T 0	#2 F		
В)	i) Describe the procedure for designing lag compensator.ii) With neat diagram, describe the function of PID compensation in detail?	CO4	L3	5M 5M		
15. A)	Construct the state model and state transition matrix (t) for a system	CO5	L3	10M		
	characterized by the differential equation $\frac{d^3y}{dt^3} + 3\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + y = u$					
OR						
B)	Derive of state model of an armature-controlled D.C. Servo Motor	CO5	L3	10M		