ANURAG Engineering College (An Autonomous Institution) ## II B.Tech II Semester Supplementary Examinations, December – 2024 POWER SYSTEMS-II ## (ELECTRICAL AND ELECTRONICS ENGINEERING) Time: 3 Hours Max. Marks: 75 | Section – A (Short Answer type questions) | | | (25 Marks) | | | |---|--|-------------------|----------------|----------|--| | Answer All Questions | | Course
Outcome | B.T
Level | Marks | | | 1. | Infer the need for transposition of transmission lines? | CO1 | L2 | 2M | | | 2. | What is the effect of ground on capacitance? | CO1 | L1 | 3M | | | 3. | Sketch the nominal T model of a transmission line. | CO2 | L1 | 2M | | | 4. | What is proximity effect? | CO2 | L1 | 3M | | | 5. | Define the surge impedance loading. | CO3 | L1 | 2M | | | 6. | What are the reflection and refraction coefficients of a short circuited line? | CO3 | L1 | 3M | | | 7. | List out the causes for the failure of insulators? | CO4 | L2 | 2M | | | 8. | Write the methods for reducing corona effect in transmission lines. | CO4 | L2 | 3M | | | 9. | What is the need of grading the cables? | CO5 | L1 | 2M | | | 10. | List out the advantages of cables compared to overhead transmission lines? | CO5 | L2 | 3M | | | Section B (Essay Questions) | | | | | | | | r all questions, each question carries equal marks. | • | X 10M = | | | | 11. A) | (i) Discuss the concept of geometric mean distance. How is this concept used to find the inductance of composite conductor line?(ii)Derive the expression for capacitance of three phase transmission line with asymmetrical spacing. | CO1 | L3 | 5M
5M | | | | OR | | | | | | В) | Calculate the capacitance per phase of a three phase three wire transposed system when the conductors are arranged at the corners of a triangle having sides of 1.0 m, 1.5 m and 2.0 m. Diameter of each conductor is 1.2 cm. | CO1 | L3 | 10M | | | 12. A) | A three phase line delivers 4000 kW at a power factor 0.9 lagging to | CO2 | L3 | 10M | | | 12.11) | a load. If the sending end voltage is 66 kV, determine i) receiving end voltage ii) line current iii) transmission efficiency. The resistance and reactance of each conductor is 3.31Ω respectively. OR | 002 | 13 | 10111 | | | B) | Derive the expression for the ABCD constants for the nominal- π & nominal-T circuit of a medium transmission line. | CO2 | L3 | 10M | | | 13. A) | (i) Deduce the expression for velocity of propagation of travelling | CO3 | L3 | 5M | | | | waves. (ii) Discuss briefly on Bewley's Lattice Diagram OR | | L2 | 5M | | | В) | (i) Discuss the propagation of surges in transmission lines.(ii) Explain about termination of line with open circuit for travelling wave. | CO3 | L2 | 5M
5M | | | 14. A) | (i) Discuss on the suspension type and strain type insulators with a neat sketch.(ii) In a string of 3 units, the capacitance between each link to pin to earth is 11% of the capacitance of one unit. Calculate the voltage across each unit and string efficiency when the voltage across the string is 33kV. | CO4 | L2
L3 | 5M
5M | |--------|--|-----|----------|----------| | В) | Each of the three insulators forming a string has a self-capacitance of 'C' Farads. The shunting capacitance of the connecting metal work of each insulator is 0.3 C to earth and 0.2 C to the line. A guard ring increases the capacitance to the line of the metal work of the lowest insulator to 0.5 C. Calculate the string efficiency of this arrangement with the guard ring. | CO4 | L3 | 10M | | 15. A) | · · | CO5 | L2 | 5M | | | account the effects of wind and ice loading. (ii) An overhead transmission line has a span of 220m, the conductor weighing 804 kg/km. Calculate the maximum sag if the ultimate tensile strength of the conductor is 5,758 kg. Assume safety factor 2. | | L3 | 5M | | | OR | | | | | B) | (i) Discuss about the inter-sheath grading of cables.(ii) Explain the construction of underground cable with a neat sketch. | CO5 | L2 | 5M
5M |