ANURAG Engineering College

(An Autonomous Institution)

III B.Tech I Semester Supplementary Examinations, December-2024

GEOTECHNICAL ENGINEERING (CIVIL ENGINEERING)

Ti	Max.	1ax. Marks: 75				
Sec	ction – A (Short Answer type questions)		(25 Marl	ke)		
An	swer All Questions	Mar ks	CO	B.T Lev el		
1.	Determine the coefficient of curvature if D_{10} =0.125mm, D_{30} =0.625mm, D_{60} =1.875mm	, 2M	CO1	L2		
2.	Draw the phase diagram of a soil sample.	3M	CO1	L1		
3.	Deduce the relation between seepage velocity and discharge velocity.	2M	CO2	L2		
4.	If saturated unit weight of soil is given by 20.25kN/M ³ and unit weight of water is given by 9.81kN/M ³ , determine critical hydraulic gradient	s 3M	CO2	L2		
5.	Express the formula for determination of stress distribution under point load according to Westergaard's theory.	l 2M	CO3	L1		
6.	Define the term 'Compaction of soil'.	3M	CO3	L1		
7.	Define the term coefficient of compressibility of soil and write its units	2M	CO4	L1		
8.	Write an expression for time factor in terms of coefficient of consolidation and explain the terms involved in it.		CO4	L1		
9.	Write an expression for maximum angle of obliquity in shear stress analysis.	2M	CO5	L1		
10	Draw the Mohr circle presented in unconfined compressive strength of soil.	3M	CO5	L2		
•	Section B (Essay Questions)					
Answer all questions, each question carries equal marks. $(5 \times 10M = 50M)$						
11	Explain the terms with the help of three-phase diagram, void ratio, degree of saturation, water content and bulk unit weight.	10M	CO1	L3		
A)	Saturation, water content and bank anti-weight.					
	OR					
B)	A specimen of soil having a volume of 300 CC weighs 550 gm in wet condition. Determine voids ratio, degree of saturation, porosity and water content of the soil specimen if after oven drying at 105°C for 24 hours, its weight reduced to 472 gm. Take G = 2.67.		CO1	L3		
12 A)	Calculate the coefficient of permeability of a soil sample, 6cm in height and 50cm ² in a cross-sectional area, if a quantity of water equal to 450ml passed down in 10minutes under an effective constant head of 40cm.	10M	CO2	L3		

- B) A soil profile consists of layers of thickness equal to 2m, 3m and 4m with coefficient 10M CO2 L3 of permeability equal to 2×10^{-4} cm/sec, 3.5×10^{-3} cm/sec and 2×10^{-3} cm/sec. Find the equivalent coefficient of permeability, when the flow is perpendicular to the layers.
- A concentrated load of 30kN acts on the surface of a homogenous soil mass of large 10M CO3 L3 extent. Find the stress intensity at a depth of 8m and
- A) i) Directly under the load ii) At a horizontal distance of 6 m.

OR

- B) The optimum moisture content of soil is 14.50% and its maximum dry density is 10M CO3 L3 17.50kN/m³. The specific gravity of soil grain is 2.60.

 Determine:(a) The degree of saturation and (b) Percentage of air voids of the soil at OMC.
- In a laboratory, the consolidation test was performed on a specimen of clay 3cm 10M CO4 L3 thick. The sample was drained at top and bottom. The time required for 50%
- A) consolidation of the sample was observed to be 15minutes. Determine the coefficient of consolidation of clay. Calculate time required for 50% and 90% consolidation for this clay deposit in the field 3m thick and drained at both ends.

OR

- B) Describe the consolidometer test. Explain results of consolidometer test with neat 10M CO4 L3 sketches.
- A CU triaxial test was conducted on saturated clay. When the confining pressure 10M CO5 L3 was 200kN/M², the sample failed at a deviator stress of 500kN/M². The pore water A) pressure was 150kN/M². The failure plain occurred at an angle of 60° to the horizontal. Determine normal and shear stresses on the failure plane at failure.

OR

B) The following results were obtained from a CU test on a normally consolidated clay. 10M CO5 L3 Plot the strength envelope in terms of total stresses and determine the strength parameters.

S.NO	Cell pressure (kN/m²)	Deviator stress (kN/m²)	Pore water Pressure (kN/m²)
1.	250	152	120
2.	500	300	250
3.	750	455	350