ANURAG Engineering College

(An Autonomous Institution)

III B.Tech I Semester Supplementary Examinations, December - 2024 ELECTRICAL MEASUREMENTS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time:	3 Hours	,	ax. Mar	ks: 75			
Section – A (Short Answer type questions)			(25 Marks)				
Answer All Questions		Course Outcome	B.T Level	Marks			
1.	Define static error.	CO1	L1	2M			
2.	For moving iron type instruments, give the expression for the	CO1	L2	3M			
	deflecting torque.						
3.	State the advantages of instrument transformers	CO2	L2	2M			
4.	State the use of potential transformer	CO2	L1	3M			
5.	Mention errors in dynamometer wattmeters	CO3	L1	2M			
6.	Explain driving and braking torques.	CO3	L2	3M			
7.	Describe the basic principle of operation of a d.c. potentiometer.	CO4	L1	2M			
8.	List the applications/uses of potentiometers	CO4	L2	3M			
9.	Describe loss of charge method.	CO5	L1	2M			
10.	Explain measurement of loss angle.	CO5	L2	3M			
	Section B (Essay Questions)						
Answe	r all questions, each question carries equal marks.	(5)	X 10M	= 50M)			
11. A)		CO1	L2	5M			
11.11)	ii) Describe the principle of attracted disc type E.S. voltmeters.	001	L3	5M			
	OR		20	0111			
B)	i) Discuss about errors and compensations of measuring	CO1	L2	5M			
,	instruments.						
	ii) Explain the operation of electrometer type electrostatic		L3	5M			
	voltmeters.						
12. A)	Explain the construction of i) Current transformer ii) Potential	CO2	L2	10M			
	transformer.	COZ	LZ	10101			
	OR						
B)	Explain the working of Three-phase electrodynamometer type	CO2	L3	10M			
	power factor with a neat diagram						
13. A)	Give the constructional details of electro dynamometer type						
15. A)	wattmeter with a neat sketch.	CO3	L2	10M			
	OR						
R)	What are the various types of errors in induction type energy meter?						
(נב	Explain the methods incorporated for their compensation	CO3	L2	10 M			
	Explain the methods mortporated for their compensation						
14. A)	i) With neat figure explain the working of an AC Potentiometer.	CO4	L3	5M			
)	ii) Discuss the significance of standardization.		L2	5M			
	OR						
B)	i) Describe the principle of operation of LVDT	CO4	L2	5M			
,	ii) List the advantages and disadvantages of A.C potentiometers			5M			

15. A)	i) Draw the circuit diagram of a Wheatstone bridge and derive the condition for balance.	CO5	L3	5M
	ii) Explain the features of De-Sauty's Bridge with a neat sketch		L2	5M
	OR			
B)	Explain how Wien's bridge can be used for experimental determination of frequency. Derive the expression for frequency in terms of bridge parameters.	CO5	L2	10M