ANURAG Engineering College

(An Autonomous Institution)

III B.Tech II Semester Supplementary Examinations, December-2024 PRE-STRESSED CONCRETE (CIVIL ENGINEERING)

Time: 3 Hours Max. Marks: 75

Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks			
1.	Write the basic concept of prestressed concrete.	CO1	L1	2M			
2.	Explain about the post tensioning system.	CO1	L2	3M			
3.	Give the expression for loss due to elastic deformation of concrete.	CO2	L1	2M			
	List out the losses of Pre-stressing due to pre-tensioning system.	CO2	L2	3M			
4. 5.	Define kern line of section in PSC.	CO ₂	L1	2M			
	Define concentric tendons with sketches.	CO3	L1	3M			
6.		CO3	L1	2M			
7.	Define Anchorage zone stresses.	CO4	L1 L2	3M			
8.	What is the stress distribution in double end block analysis by Magnel						
9.	Define propped section of composite pre-stressed concrete beams.	CO5	L1	2M			
10.	Write down the short notes on short term deflection.	CO5	L2	3M			
Section B (Essay Questions)							
Answ	er all questions, each question carries equal marks.	`		=50M)			
11. A)	Elaborate, why the high strength concrete and high strength steel is	CO1	L3	10M			
	used in Prestressed concrete structures.						
	OR						
B)	Explain in detail about various principal used in PSC.	CO1	L2	10M			
12. A)	A rectangular concrete beam 370 mm X 250 mm is prestressed by	CO2	L3	10M			
	means of 15 numbers of 5 mm diameter wires located 65 mm from the						
	bottom of the beam and 3 numbers of 5mm diameter wires located 25						
	mm from the top of the beam. If the wires are initially tensioned to a						
	stress of 820 N/mm ² . Calculate the %loss of stress in steel						
	immediately after transfer allowing for the loss of stress due to elastic						
	deformation of concrete only. $E_s = 210 \text{ kN/mm}^2$, $E_c = 31.5 \text{ kN/mm}^2$.						
	OR	000	T 0	103.5			
B)	Explain the system of prestressing of Freyssinet system.	CO2	L2	10 M			
13. A)	Explain with neat sketches of elastic design of PSC slab?	CO3	L2	10M			
	OR						
B)	A prestressed girder of rectangular section 250 mm wide by 400 mm	CO3	L3	10M			
	deep is to be designed to support an ultimate shear force of 150 kN.						
	The uniform prestress across the section is 5 N / mm ² . Given the						
	characteristic cube strength of concrete as 40 N / mm ² and Fe-415						
	HYSD bars of 8 mm diameter, design suitable spacing for the stirrups						
	conforming to the Indian standard code IS:1343 recommendations.						
	Assume cover to the reinforcement as 50 mm.						
1.4	P. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	004	1.0	103.4			
14. A)	Explain in detail about PSC in Stress distribution in end block analysis	CO4	L2	10M			
	with neat sketches?						

В)	The end block of post tensioned beam is 450mm x 550mm. Four cables, each made up of 8 wires of 12mm diameter strands and carrying a force of 1250 kN are anchored by plate anchorages, 150mm x 150mm located with their centers at 125mm from the edges of the end block. The cable duct is of 50mm diameter. The cube strength of concrete at transfer is 35N/mm ² . Check for bearing stress as per IS 1343 provision. Design suitable anchorage for the end block.	CO4	L3	10M
15. A)	Explain with neat sketches of differential in shrinkage in PSC composite members as per IS.	CO5	L2	10M
	OR			
В)	A postal tensioned beam (bonded) 300mm X 600mm has a prestress of 1560 kN in tendons immediately which eventually reduces to 1330 kN due to losses. The beam is simply supported over a span of 12m and carries concentrated loads of 44.5 kN each at a distance of 4.5 m from supports. The tendon is parabolic with zero eccentricity at support and 120mm below centroidal axis at midspan. Calculate deflection at midspan due to,	CO5	L3	10M

ii) Prestress + self-weight + live load E_c =35 kN /mm²