ANURAG Engineering College (An Autonomous Institution) ## II B.Tech I Semester Supplementary Examinations, December – 2024 **ELECTRONIC DEVICES AND CIRCUITS** (COMMON TO (R18-EEE, ECE & CSE) AND (R15-CSE)) | (COMMON TO (RIS-EEE, ECE & CSE) AND (RIS-CSE)) Time: 3 Hours Max. Marks: 75 | | | | | | |---|---|---------------------------------|----------------------------|-----------------------------|--| | Section – A (Short Answer type questions) Answer All Questions | | Course | B.T | 5 Marks)
Marks | | | 1.
2.
3.
4.
5. | Draw the VI characteristics of Schottky Barrier Diode Define Ripple Factor and Rectifier Efficiency. Explain why BJT is called Current Controlled Device? Define Pinch-off Voltage. Define Operating Point. | CO1
CO1
CO2
CO2
CO2 | Level L1 L2 L1 L2 L1 L2 L1 | 2M
3M
2M
3Mf
2M | | | 6.
7. | What is meant by Thermal Runway? Draw the h parameter Equivalent Circuit Diagram of BJT in Common Base Configuration. | CO3
CO4 | L2
L1 | 3M
2M | | | 8.
9.
10. | Compare CB, CE and CC Amplifiers. | CO4
CO5
CO5 | L2
L1
L2 | 3M
2M
3M | | | Section B (Essay Questions) Answer all questions, each question carries equal marks. (5 X 10M = 50M) | | | | | | | 11. A) | | CO1 | L3 | 10M | | | В) | Determine ripple factor and rectification efficiency for the Bridge rectifier. | CO1 | L3 | 10M | | | 12. A) | Draw the transistor circuit in CE configuration. Sketch the output characteristics. Indicate 'active', 'saturation' and 'cutoff region'. Briefly explain the nature of those curves. OR | CO2 | L3 | 10M | | | B) | Analyze the construction and working of n-channel JFET. Draw the Drain and Transfer characteristics. | CO2 | L3 | 10M | | | 13. A) | Make use of the circuit diagram to explain the principle operation of Collector to Base Bias arrangement. Relate the expression for S and infer how the stability factor can be improved. OR | CO3 | L3 | 10M | | | В) | In a Silicon transistor circuit with a fixed bias, V_{cc} =9V, R_c =3K Ω , R_B =8K Ω , β =50, V_{BE} =0.7V. Evaluate the operating point and Stability factor. | CO3 | L3 | 10M | | | 14. A) | Draw the Circuit of CE amplifier. Solve the expressions for the | CO4 | L3 | 10M | |--------|--|-----|----|-----| | | performance quantities. OR | | | | | В) | A CC amplifier is driven by a source of internal resistance R_s =1k Ω , and load resistance R_L =2k Ω . The transistor parameters are h_{ic} =1.1k Ω , h_{fc} =-51, h_{rc} =1 and h_{oe} =25 μ A/V. Determine all Current and Voltage gains, input and output resistances of the amplifier. | CO4 | L3 | 10M | | 15. A) | For a Current Series feedback amplifier, Obtain for AV,Rif and Rof OR | CO5 | L3 | 10M | | B) | Draw the circuit of Hartley oscillator and explain its working. Derive
the expressions for frequency of oscillation and condition for starting
of oscillation | CO5 | L3 | 10M |