ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, December-2024 DESIGN AND ANALYSIS OF ALGORITHMS (COMPUTER SCIENCE ENGINEERING)

Time: 3 Hours Max. Marks: 75

	DATORIO	27,244	7220 272002				
Section – A (Short Answer type questions)			(25 Marks)				
Answer All Questions		Course	B.T	Marks			
		Outcome	Level				
1.	0 , 0	CO1	L1	2M			
2.	Write algorithm for transpose of matrix (nxn) and find its time complexity.	CO1	L2	3M			
3.	What is min cost spanning tree? Can it be found for unconnected graphs?	CO2	L1	2M			
4.	Find time complexity of DFS in Graphs.	CO2	L2	3M			
5.	What is principle of optimality?	CO3	L1	2M			
6.	Write algorithm for All pair shortest path.	CO3	L2	3M			
7.	What are explicit and implicit constraints in Backtracking?	CO4	L1	2M			
8.	Write recursive Backtracking algorithm.	CO4	L2	3M			
9.	Define NP-Hard Problem.	CO5	L1	2M			
10.	Draw comparison tree for sorting three elements.	CO5	L2	3M			
Section B (Essay Questions)							
Answer all questions, each question carries equal marks.			X 10M :	= 50M)			
11. A)	Explain about various asymptotic notations used to assess the	CO1	L3	10M			
,	performance of algorithms using time complexity analysis.						
	OR						
B)	The worst-case time of procedure merge sort is O(nlogn). What is its	CO1	L3	10M			
	best-case time? Can we say that the time for merge sort is Theta						
	(nlogn).						
12. A)	Find optimal solution to the knapsack instance using greedy approach	CO2	L3	10M			
	n=7, $m=15$, $(p1p7)=(10,5,15,7,6,18,5)$ and $(w1w7)=(2,3,5,7,1,4,1)$.						
	OR						
B)	Write Prim's min cost spanning tree algorithm. What is its time	CO2	L3	10M			
	complexity?						
13. A)	Construct optimal binary search tree for the following set of identifiers	CO3	L3	10M			
	(a1,a2,a3,a4)=(count, float, if, while) with $P(1)=1/20$, $P(2)=1/5$,						
	P(3)=1/10, $P(4)=1/20$ and $q(1)=1/10$, $q(2)=1/5$, $q(3)=1/20$, $q(4)=1/20$.						
	OR						
B)	Discuss the Reliability Design problem using Dynamic programming.	CO3	L3	10M			
,							
14. A)	Draw state space tree for mColoring when n=3 and m=3. Write	CO4	L3	10M			
	algorithm for mColoring.						
OR							
B)	N=4, $(p1,p2,p3,p4)=(10,10,12,18)$, $(w1,w2,w3,w4)=(2,4,6,9)$ and	CO4	L3	10M			
	m=15 find solution using FIFO Branch and Bound.						

R18/R15

Question Paper Code: R18A22CS01/R15A22CS01

15. A)	Explain the strategy to prove that a problem is NP hard.	CO5	L3	10M
	OR			
B)	Explain Node cover Decision Problem (NCDP).	CO5	L3	10M