ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, January – 2025

APPLIED PHYSICS (COMMON TO CSE & AIML)

Time: 3 Hours			Max. Marks: 60		
Section – A (Short Answer type questions)		(10 Marks)			
Answer All Questions		Course	B.T	Marks	
		Outcome	Level		
1.		CO1	L1	1M	
2.		CO1	L1	1M	
3.		CO2	L2	1M	
4.	1	CO2	L1	1M	
5.	Describe npn transistor.	CO3	L1	1M	
6.	1	CO3	L1	1M	
7.	What are nanomaterials?	CO4	L3	1M	
8.	Write any two applications of nanomaterials.	CO4	L2	1M	
9.	How is population inversion achieved in the laser working principle?	CO5	L1	1M	
10.		CO5	L2	1M	
Section B (Essay Questions)					
Answer all questions, each question carries equal marks.			X 10M =	= 50M)	
11. A)	Classify Fraunhofer diffraction and Fresnel diffraction. OR	CO1	L2	10M	
B)		CO1	L3	10 M	
12. A)	Derive the Schrodinger wave equation and mention its significance. OR	CO2	L2	10M	
B)	Explain the Kronig-Penny model with a neat diagram.	CO2	L2	10M	
13. A)	What is the significance of the Hall effect? Explain the Hall experiment with a suitable diagram and mention four of its applications.	CO3	L1&L2	10M	
	OR				
В)	Explain the formation of the pn-junction diode with an energy level diagram and explain its V-I characteristics.	CO3	L2	10M	
14. A)	Why do nanomaterials exhibit different properties? OR	CO4	L3	10M	
B)	Explain the synthesis of nanomaterials by using the sol-gel method.	CO4	L2	10M	
15. A)	Explain the construction and working of semiconductor LASER. OR	CO5	L2	10M	
B)	What is the acceptance angle and numerical aperture of an optical fibre? If a light is being launched from air to an optical fibre, derive an expression for the acceptance angle of an optical fibre having a refractive index of core n1 and a refractive index of the cladding is n2.	CO5	L2	10M	