ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Regular/Supplementary Examinations, December – 2024 ANALOG CIRCUITS

(ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours		Max. Marks: 60		
Section – A (Short Answer type questions)		(10 Marks)		
	r All Questions	Course	B.T	Marks
		Outcome	Level	
1.	What are the different compensation techniques?	CO1	L1	1M
2.	How the bypass capacitor affect the output of an amplifier?	CO1	L2	1 M
3.	Outline the characteristics FET as a voltage controlled device.	CO2	L2	1 M
4.	State the drain current equation of JFET	CO2	L2	1 M
5.	Give the different types of coupling mechanisms.	CO3	L1	1M
6.	What is Darlington connection?	CO3	L1	1M
7.	List out the characteristics of negative feedback	CO4	L1	1M
8.	Infer about the effect of positive feedback on an amplifier.	CO4	L2	1M
9.	State Barkausen criterion.	CO5	L1	1M
10.	Calculate the frequency of oscillations of LC oscillators for L=100 μ H and C1= 330pF and C2=220pF.	CO5	L2	1M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$		
11. A)		•		•
11.11)	and output resistance for a common emitter amplifier. OR	CO1	L3	10M
B)	Define h-parameter. Obtain the equivalent hybrid model for the	CO1	L2	10M
	transistor.			
12. A)	Draw the circuit for JFET common source amplifier with voltage	002	т 2	10) (
	divider bias having by pass Resistor (Rs) and determine the expression for input impedance, output impedance and voltage gain.	CO2	L3	10M
	OR			
B)	Compare the characteristics of CB, CE and CC amplifiers.	CO2	L2	10M
13. A)	Explain the different coupling methods used in amplifier with	CO3	L2	10M
	necessary diagram.			
Τ.\	OR	000	τ.ο	107 /
В)	With a neat diagram, explain the Darlington connection.	CO3	L2	10M
14. A)	Draw the block diagram of feedback amplifier and explain the	CO4	L2	10M
	concept of feedback.			
D)	OR			
В)	Explain the voltage series feedback amplifier configuration wit relevant diagram.	CO4	L2	10M
15. A)	Illustrate the RC phase shift oscillator and derive the frequency of	COF	τ ο	103.6
	oscillations.	CO5	L2	10M
	OR			
B)	Define Q factor. With a neat diagram, explain the working principle	CO5	L2	10M
	of crystal oscillator.	003	1.2	10141