ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Regular/Supplementary Examinations, December – 2024 DIGITAL LOGIC DESIGN

(ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 60				
Section – A (Short Answer type questions)			(10 Marks)	
	All Questions	Course	B.T	Marks
		Outcome	Level	
1.	Define binary logic.	CO1	L1	1M
2.	Write the truth table of EX-OR gate.	CO1	L2	1M
3.	Construct AND gate using diodes.	CO2	L1	1M
4.	Write the applications of CMOS logic family.	CO2	L2	1M
5.	Write the excitation table of JK flip flop.	CO3	L1	1M
6.	Write about Hazards in combinational logic circuits.	CO3	L2	1M
7.	List out the applications of shift register.	CO4	L1	1M
8.	What is the significance of a counter's clock input?	CO4	L2	1M
9.	Discuss the applications of finite state machines in real-world	CO5	L1	1 M
	scenarios.			
10.	What is the significance of a reset state in an FSM?	CO5	L2	1M
Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		(5)	X 10M	=50M)
	Determine the value of b, Given that	CO1	L3	10M
,	i) $(16)_{10} = (100)_b$ ii) $(292)_{10} = (1204)_b$			
	OR			
B)	State and prove De Morgan's theorems	CO1	L2	10M
	,			
12. A)	With the aid of a four-variable Karnaugh map, derive minimal sum-	CO2	L3	10M
,	of products expressions for each of the following functions.			
	i) $f(A,B,C,D) = \sum (1,3,7,11,15) + d(0,2,5,10)$.			
	ii) $f(A,B,C,D) = \sum (1,4,8,12,13,15) + d(3,14)$.			
	OR			
B)	Summarize the standard TTL NAND Gate-Analysis &	CO2	L2	10M
,	characteristics.			
13. A)	Design a 4-bit adder-subtractor using full adders and explain its	CO3	L3	10M
•	operation.			
	OR			
B)	Convert SR-flipflop into JK-Flipflop and verify the truth table.	CO3	L2	10M
r				
14. A)	Design and Implement 4-bit binary counter using D flipflop.	CO4	L3	10M
	OR			
B)	Explain about Bidirectional Shift Register.	CO4	L2	10M
15. A)	Compare Moore and mealy machine and explain the rules for	CO5	L3	10M
	converting mealy machine to Moore and vice versa.			
	OR			
B)	Write a short note on	CO5	L2	10M
	i) State diagram ii) State table			
	iii) State Assignment rules			

