ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Regular/Supplementary Examinations, December-2024 NUMERICAL METHODS AND COMPLEX VARIABLES (COMMON TO EEE & ECE)

Time:	M	Iax. Marks: 60		
Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(10 B.T Level	Marks) Marks
1.	Write the formula of Fourier sine transform of f(x)	CO1	L1	1M
2.	` '	CO1	L1	
۷.		COI	LI	1M
3.	$f(x) = x$ in $(0, \pi)$ Find the positive interval (root) in which the root of $x^3 - 9x + 1 = 0$ lies.	CO2	L2	1M
4.	Construct backward difference table for the following data:	CO2	L2	1M
	x 0 1 2 3 4 5 y -5 1 9 25 55 105	002	22	1141
5.	Using Euler's method find y(0.1), given that $y' = x^2 - y$, $y(0) = 1$	CO3	L3	1M
6.	Write formula of Simpson's 3/8 th rule	CO3	L1	1M
7.	Define Bilinear transformation	CO4	L1	1M
8.	Find whether the function $2xy+i(x^2-y^2)$ is analytic	CO4	L1	1M
	Mention the types of singular points	CO5	L1	1M
10.		CO5	L1	1M
	Section B (Essay Questions)			
Ancie	all questions, each question carries equal marks.	(5.3	7 10N/I -	- 50M)
		•	X 10M =	,
11. A)	Find the Fourier series to represent $x + x^2$ in $(-\pi, \pi)$ and deduce that	CO1	L2	10M
	$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$			
	2 ² 3 ² 4 ² 6			
B)		CO1	L3	10M
D)	Find the Fourier transform of $f(x) = \int_{0}^{1} f(x) dx$	COI	LIJ	1011
	Find the Fourier transform of $f(x) = \begin{cases} 1, & \text{for } x < 1 \\ 0, & \text{for } x > 1 \end{cases}$.			
	Hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$			
12. A)	Find the positive real root of the equation $x^3 - 5x - 7 = 0$ by the Newton – Raphson method.	CO2	L3	10M
	OR			
B)	Given $\sin 45^0 = 0.7071$, $\sin 50^0 = 0.7660$, $\sin 55^0 = 0.8192$ and $\sin 60^0 = 0.8660$, find $\sin 52^0$ using Newton's forward interpolation formula	CO2	L3	10M
13. A)	Evaluate $\int_0^2 e^{-x^2} dx$ by using (i) Trapezoidal rule (ii) Simpson's	CO3	L3	10M
ĺ	V			
	$1/3^{\text{rd}}$ rule taking $h = 0.25$			
T) \	OR	000	т о	103.5
В)	Using Runge-Kutta method of fourth order, find y at $x = 1.1$ given that $2y' = 2x^3 + y$, $y(1) = 2$.	CO3	L3	10M

14. A)	Using Milne Thomson method construct the analytic function whose real part is $\frac{y}{x^2+y^2}$	CO4	L3	10M
	OR			
B)	Find the Bilinear transformation which maps the points $Z = -1$, 0, 1 to $W = 0$, i, 3i.	CO4	L2	10M
15. A)	Evaluate $\oint_C \frac{4-3z}{z(z-1)(z-2)} dz$ where C is the circle $ z = \frac{3}{2}$ using Cauchy residue theorem	CO5	L3	10M
B)	OR	CO5	L3	10M
	Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series valid for $1 < z < 3$			