ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, December – 2024

STRUCTURAL ANALYSIS - I (CIVIL ENGINEERING)

Time: 3 Hours Max. Marks: 60

Section – A (Short Answer type questions)			(10 Marks)	
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	Define types of Frames.	CO1	L1	1M
2.	Define the types of Arches.	CO1	L2	1M
3.	Define the static and kinematic indeterminacy of beam.	CO2	L2	1 M
4.	A simply supported beam of length L carries a point load W at the centre. Find the deflection using energy theorem.	CO2	L3	1M
5.	Write the effects of sinking supports	CO3	L2	1 M
6.	Draw BMD for Propped cantilever with point at centre.	CO3	L3	1 M
7.	Write clapyron's theorem and explain terms.	CO4	L2	1M
8.	Write assumptions in slope deflection method.	CO4	L2	1 M
9.	Draw I.L.D for the reaction at A for a simply supported beam AB.	CO5	L3	1 M
10.	Define ILD.	CO5	L3	1M

Section B (Essay Questions)

Answer all questions, each question carries equal marks.

 $(5 \times 10M = 50M)$

Determine the forces developed in the members of the truss 11. A) shown fig. Use any method.

CO₁ L3 10M

OR

B) Determine the forces in all the members of the truss shown in figure CO₁ L3 10M by using method of joints.

A Three hinged arch has a span of 30m and rise of 10 m. The arch carries udl of 0.6KN/m on the left half of the span. It also carries two concentrated load of 1.6KN & 1KN at 5m & 10m from right end. Determine Reactions at the supports.

CO₂ L2 10M

OR

B) Calculate the reactions and Maximum Bending Moment for the given three hinged parabolic arch as shown in fig.

CO₂

10M

A cantilever ACB Of span 20M is fixed at A and propped at B acting two-point loads 4KN and 8KN at a distance of 5m and 8m from fixed support draw SFD and BMD.

CO₃ L2 10M

B) A fixed beam of length 6 m carries a point load of 30kN at a distance of 2 m from left end. Determine the fixed end moments and deflection under the load. Take EI= 1x10⁴ kNm².

CO₃ L2 10M

Draw BMD and SFD for the Continuous beam shown in fig.

CO₄

L3 10M

B) Draw BMD and SFD for the beam shown in fig by using slope deflection method.

CO₄

L3 10M

15. A) A uniform load of 2000N/m, 5 m long crosses a girder of 20m span from left to right. Calculate the maximum S.F and B.M at a section 8M from left support.

CO₅

L2 10M

OR

B) Two-point loads of 5000N and 2000N spaced 3M a part cross a girder of 9 m span from left to right, with smaller loading leading. Draw the SF and BM diagrams. Find the position and amount of absolute maximum bending moment.

CO₅

L3 10M