ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, December – 2024 ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES (ELECTRONICS & COMMUNICATION ENGINEERING)

Time: 3 Hours	Max. Marks: 60

Section – A (Short Answer type questions)		(10 Marks)		
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	State Gauss's law in electrostatics.	CO1	L1	1M
2.	Give the relation between E and V?	CO1	L1	1 M
3.	Define Magnetic flux density?	CO2	L1	1M
4.	Write the expression for Lorentz force equation.	CO2	L2	1M
5.	State Faraday's law.	CO3	L1	1M
6.	Give the expressions for any two Maxwell's equations.	CO3	L2	1M
7.	Define skin depth.	CO4	L1	1M
8.	Define Surface impedance?	CO4	L1	1M
	What are lumped and distributed parameters?	CO5	L1	1 M
10.	List the applications of smith chart.	CO5	L1	1M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		$(5 \times 10M = 50M)$		
11. A)		CO1	L2	10M
11. A)	i) Point charge ii)Infinite line charge	COI		10101
	OR			
B)	Derive continuity equation and relaxation time from fundamentals.	CO1	L3	10M
2)	Delive continuity equation and retailation time from randamentals.	001		10111
10 (1)	Explain the following annihilations of Ammone's singuit laws	CO2	T 2	10) (
12. A)	Explain the following applications of Ampere's circuit law.	CO2	L2	10M
	i) Infinite line current ii) Infinite sheet of current OR			
D)		CO2	L3	101/4
B)	Explain about ampere's force law with derivation?	CO2	L3	10M
13. A)	State and prove the Maxwell's equations for electrostatic fields.	CO3	L3	10M
	OR			
B)	Given $E = 10sin(\omega t - \beta z)a_y$ V/m in free space, determine D,B,H .	CO3	L3	10M
14. A)	Derive the expressions for reflection coefficient and transmission	CO4	L3	10M
14.21)	coefficient when the wave is incident normally on dielectric.	001	L 3	10111
	OR			
B)	Explain about wave propagation in lossless and conducting	CO4	L2	10M
D)	medium?	CO4	1	10111
	modium:			
15. A)	Compare the relation between different propagation parameters for	CO5	L2	10M
	different types of transmission lines?			
	OR			
B)	A transmission line in which no distortion is present has the	CO5	L3	10M
	following parameters: $Z_0 = 50 \Omega$, $\alpha = 0.020 \text{m}^{-1}$, Velocity=0.6V ₀ .			
	Determine R,L,G,C and wavelength at 0.1GHZ.			