ANURAG Engineering College

(An Autonomous Institution)

II B.Tech II Semester Supplementary Examinations, December – 2024 PROBABILITY THEORY AND STOCHASTIC PROCESSES (ELECTRONICS & COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 60				
Section – A (Short Answer type questions)			•	Marks)
Answer All Questions		Course	B.T	Marks
		Outcome	Level	
1.	Define Random variable.	CO1	L1	1M
2.	Define Poisson random variable.	CO1	L1	1M
3.	Write short notes on Chebychev's inequality.	CO2	L2	1M
4.	Explain about random variable and give example.	CO2	L1	1M
5.	Write about Cross-Correlation Function.	CO3	L1	1M
6.	Mention the properties covariance.	CO3	L2	1M
7.	Write the expression for power spectral density.	CO4	L1	1M
8.	Define spectral characteristics of system response.	CO4	L1	1M
9.	Write about Noise equivalent bandwidth.	CO5	L2	1M
10.	Define Average Noise Figure.	CO5	L1	1 M
	Section R (Essay Questions)			
Section B (Essay Questions) Answer all questions, each question carries equal marks. (5 X 10M = 50M)				
	r all questions, each question carries equal marks.	•		•
11. A)	Discuss about joint and conditional probabilities in detail.	CO1	L3	10M
B)	OR Describe the binomial density and distribution function for case N=6 and p=0.25.	CO1	L2	10M
12. A)	State and explain the central limit theorem	CO2	L2	10M
	OR			
B)	What are the properties of Jointly Gaussian Random variable.	CO2	L2	10M
13. A)	Explain in detail the wide sense stationary process and strict-sense stationery processes with necessary expressions. OR	CO3	L3	10M
B)	List and explain various properties of Autocorrelation function	CO3	L2	10M
14. A)	Derive the Relationship between Power Spectrum and Autocorrelation Function	CO4	L3	10M
	OR	~~.		
B)	Discuss about Cross-Power Density Spectrum and its properties.	CO4	L3	10M
15. A)	Define Shannon-Hartley law and explain in detail with example. OR	CO5	L2	10M
B)	Define Entropy and Trade -off between bandwidth and SNR.	CO5	L2	10M