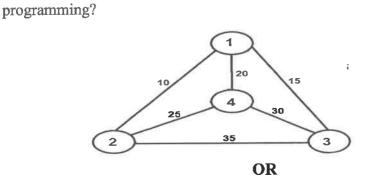
ANURAG Engineering College

(An Autonomous Institution)

III B.Tech I Semester Regular Examinations, December – 2024


DESIGN AND ANALYSIS OF ALGORITHMS

(COMMON TO CSE, IT AND AI&ML)

Time: 3 Hours

	Max.	Marks:	60
--	------	--------	-----------

S	ection – A (Short Answer type questions)		(10	— Marks)
	All Questions	Course	B.T	Marks
11115770	7.1.1. V	Outcome	Level	
1.	Explain Big-Oh Notation.	CO1	L1	1M
2.	In what way a time complexity differs from space complexity.	CO1	L1	1 M
3.	What is the description on greedy method.	CO2	L1	1 M
4.	Write an algorithm for simple Union Operation?	CO2	L2	1M
5.	What you mean by dynamic programming.	CO3	L1	1M
6.	Explain principle of optimality.	CO3	L1	1 M
7.	Write a note on LC-Search?	CO4	L1	1 M
8.	Write the applications of Backtracking.	CO4	L1	1M
9.	What is meant by non-deterministic algorithm?	CO5	L1	1 M
10.	Specify the relationship between P & NP Problems.	CO5	L2	1M
	Section B (Essay Questions)			
Answei	wer all questions, each question carries equal marks.		X 10M	=50M)
11. A)	What is time complexity of an algorithm. Describe the different	CO1	L2	10M
11111)	asymptotic notations with suitable examples.			
	OR			
B)	Explain Strassens matrix multiplication algorithm and multiply the	CO1	L2	10M
	following matrix using Strassens matrix multiplication.			
	/4 6 2 7\ /4 0 0 0\			
	$R = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} C = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$			
	$B = \begin{pmatrix} 4 & 6 & 2 & 7 \\ 0 & 5 & 6 & 1 \\ 0 & 0 & 7 & 5 \\ 0 & 0 & 0 & 8 \end{pmatrix} C = \begin{pmatrix} 4 & 0 & 0 & 0 \\ 5 & 5 & 0 & 0 \\ 7 & 4 & 7 & 0 \\ 3 & 3 & 8 & 8 \end{pmatrix}$			
	10008/3388/			
	(0 0 0 0) (0 0 0)			
10.15		CO2	L2	5M
12. A)	i) Explain the Kruskal's algorithm with an example.	CO2	L2 L3	5M
	ii) Describe Union and Find algorithms.		נת	2111
77)	OR	CO2	L3	10M
B)	Explain Greedy Method? Explain 0/1 Knapsack Problem? Solve 0/1	CO2	L3	TOIVE
	Knapsack problem Using Greedy Method for the instance n=7,			
	m=15 (p1,p2p7)=(10,5,15,7,6,18,3)			

13. A) Solve the following travelling salesperson problem using Dynamic

(w1,w2---w7)=(2,3,5,7,1,4,1).

10M

CO3

L3

В)	Solve $0/1$ knapsack problem for the following instance using dynamic programming n=4, (w1, w2, w3, w4) =(2,3,4,5) (p1, p2, p3,p4) = (1,2,5,6), m=8.	CO3	L3	10M
14. A)	 i) Describe Backtracking technique to graph colouring problem? ii) Draw the state space tree for graph colouring. OR 	CO4	L2 L3	5M 5M
В)	Draw the portion of state space tree generated by LCBB for the following knapsack instances: N=4, (P1, P2, P3, P4) = (10,10,12,18) (W1, W2, W3, W4, W5) = (2,4,6,9) and m=15	CO4	L3	10M
15. A)	Explain P,NP, NP-Hard, NP-Complete Problems and specify the relationship among them?	CO5	L2	10M
ъ,	OR			
В)	i) Briefly explain deterministic and Nondeterministic algorithms with example.	CO5	L2	5M
	ii) Explain Node cover decision problem.			5M