ANURAG Engineering College

(An Autonomous Institution)

III B.Tech I Semester Regular Examinations, December – 2024 CONTROL SYSTEMS

(ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours

Max. Marks: 60

Section – A (Short Answer type questions)		(10 Marks)		
Answer All Questions		Course Outcome	B.T Level	Marks
1.	What is feedback? What types of feedback is employed in control system?	CO1	L2	1M
2.	Write the force balance equations of ideal mass element, ideal dashpot and ideal spring.	CO1	L2	1M
3.	Define Step and Ramp Signal.	CO2	L2	1M
4.	What is stability?	CO2	L2	1M
5.	What are frequency domain specifications?	CO3	L2	1M
6.	What is Polar Plot?	CO3	L2	1M
7.	What is compensator?	CO4	L2	1M
8.	What is disturbance reduction?	CO4	L2	1M
9.	Define state and state equation.	CO5	L2	1M
10.	What are the different methods available for computing eAt?	CO5	L2	1M

Section B (Essay Questions)

Answer all questions, each question carries equal marks.

 $(5 \times 10M = 50M)$

10M

11. A) Obtain mathematical model for the mechanical system shown in GO1 fig.1.

OR

B) For the block diagram shown in fig.2. Obtain transfer function.

CO1

L3 10M

12. A)	i) Derive the response of first order system for unit step response.	CO2	L3	5M
ŕ	ii) Examine the stability by routh criterion	CO2	L3	5M
	$S^4 + 6S^3 + 26S^2 + 56S + 80 = 0.$			

CO₅

L3

10M

given State Model.

	OR			
B)	Draw the root locus plot for the system whose open loop transfer function is	CO2	L3	10M
	$G(s)H(s) = \frac{k}{s(s+1)(s+2)}$			
13. A)	Draw the polar plot for type 0 and order 2 system and also type-1 and order 2 systems with the standard examples.	CO3	L3	10M
D)	OR	G00	T 0	403.5
B)	Sketch the Bode Plot for the open loop transfer function	CO3	L3	10M
	G(S)H(S) = 10/S(0.1S+1)(0.5S+1). Determine Gain and Phase margin.			
14. A)	Explain the procedure for the design of Lag compensator using Bode Plot.	CO4	L2	10M
	OR			
B)	Explain the procedure for the design of lead compensator using Bode Plot.	CO4	L3	10 M
15. A)	Construct a State Model for a system characterized by differential	CO5	L3	10M
	equation $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y + U = 0$. Give the block			
	diagram representation of the State Model.			
	OR			

B) Determine whether the system is completely Controllable for a

 $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} + \begin{bmatrix} 11 \\ 1 \\ -14 \end{bmatrix} u \quad Y = \begin{bmatrix} -3 & 5 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$