ANURAG Engineering College

(An Autonomous Institution)

III B.Tech I Semester Regular Examinations, December - 2024

LINEAR CONTROL SYSTEMS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Max. Marks: 60 Time: 3 Hours

Section – A (Short Answer type questions)		6	(10 Marks)	
Answer All Questions		Course Outcome	B.T Level	Marks
1.	Illustrate the effect of feedback on the performance of a closed-loop control	CO1	L1	1M
2	system. State two characteristics of non-linear system with an example?	CO1	L1	1M
2. 3.	What is the significance of the time constant in a first order systems response?	CO2	L2	1M
4.	In the context of relative stability, what does the distance of poles from the imaginary axis signify?	CO2	L2	1 M
5.	State Nyquist Stability criterion.	CO3	L1	1 M
6.	How does the phase margin relate to the stability of a closed loop system?	CO3	L2	1 M
7.	How does feedback improve disturbance rejection?	CO4	L2	1 M
8.	What factors influence transient accuracy in a system?	CO4	L1	1 M
9.	How do you perform a similarity transformation in state-space analysis?	CO5	L1	1 M
10.	What is the significance of the controllability matrix in pole placement design?	CO5	L2	1M
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		(5 X	10M = 50M	
11.	Determine the transfer function $\frac{X1(S)}{F(S)}$ and $\frac{X2(S)}{F(S)}$ for the system shown in	CO1	L3	10M

F(s)F(s)A)

Figure.

- OR Derive the transfer function for the closed loop negative and positive CO₁ L2 10M feedback system?
- Consider a unity feedback system with closed transfer 10M CO₂ L3 function

A) $\frac{C(S)}{R(S)} = \frac{kS + b}{S^2 + aS + b}$. Determine the open loop transfer function G(s). Show that

the steady- state error with unit-ramp input S given by $\frac{a-k}{b}$

OR

B) For the characteristic equation $2S^6+S^5+8S^4+7S^3+8S^2+S+8$, determine the CO₂ location of roots on the S-plane and find the stability of the system using Routh stability criterion?

L3

13. A unity feedback control system has an open loop transfer function, G(s) =

CO₃ L3 10M

10M

10M

 $\frac{1}{(1+s)(2+s)(3+s)}$. Sketch the Nyquist plot and determine the stability.

B) Plot the Bode diagram for the following transfer function and obtain gain and phase cross over frequencies. $G(s) = \frac{5}{s(1+0.2s)(1+0.1s)}$

CO3 L3

14. Explain PI, PD, PID controllers.

CO₄ L3 10M

A)

OR

B) Describe how a lead compensator and lag compensator is designed in the frequency domain to improve system response?

CO₄ L2 10M

15. A system is described by the following state and output equations

CO₅ L3 10M

A) $\dot{X}_1 = -3X_1 + X_2 + U$, $\dot{X}_2 = -X_2 + U$, $Y = X_1 + X_2$ Check: i. Controllability ii. Observability

B) A system is described by the following state model

CO₅ L3 10M

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -10 & 0 \\ 0 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$$
$$\begin{bmatrix} y \end{bmatrix} = \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} u \end{bmatrix}$$

$$[y] = \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} [u]$$

 $X(0) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, input is units step signal

Calculate:

- i) State transition matrix
- ii) Zero input response
- iii) Zero state response