ANURAG Engineering College

(An Autonomous Institution)

III B.Tech I Semester Regular Examinations, December – 2024 SIGNALS AND SYSTEMS

(ELECTRICAL AND ELECTRONICS ENGINEERING)

Time: 3	Hours	Max. Marks: 60		
Section – A (Short Answer type questions) Answer All Questions		Course	B.T	Marks) Marks
1	Define Chan function	Outcome	Level	13.4
1.	1	CO1	L1	1M
2. 3.	State the linearity property of the system	CO1	L1	1M
	What is the state-space representation of a system?	CO2 CO2	L1	1M
4. 5.	Define causality in an LTI system. What is limitation of Fourier series.	CO2	L1 L1	1M 1M
5. 6.	Difference between DTFT and DFT	CO3	L1	1M
7.	Find the Laplace Transform of impulse function.	CO3	L2	1M
8.	What are the advantage of Z transform.	CO4	L2 L1	1M
9.	When does aliasing occur? How can it be avoided?	CO5	L1	1M
10.	What is Nyquist interval.	CO5	L1	1M
10.	what is hypdust interval.	CO3	LI	1171
	Section B (Essay Questions)			
Answe	Answer all questions, each question carries equal marks.		X 10M	=50M)
11. A)	State whether the following system is linear, causal, time invariant and stable	CO1	L3	10M
	and stable a) $y(n) = nx(n)+x(n+2)+y(n-2)$ b) $y(n) = 2x(n+1)+[x(n-1)]^2$			
	OR			
B)	Explain the properties of continuous and discrete signals with respect to periodicity, absolute integrability, determinism with example	CO1	L2	10M
12. A)	Construct a state model for a system characterized by the	CO2	L2	10M
	differential equation,			
	$\frac{d^3y(t)}{dt^3} + 6\frac{d^2y(t)}{dt^2} + 11\frac{dy(t)}{dt} + 6y(t) + u(t) = 0$			
	Also give the block diagram representation of the state model. OR			
B)	Consider a stable LTI system by the differential equation	CO2	L3	10M
2)	· · · · · · · · · · · · · · · · · · ·	002	110	10111
	$\frac{dy}{dt^2} + 4\frac{dy}{dt} + 3y(t) = \frac{dy}{dt} + 2x(t)$ Find its response for input			
	$\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$ Find its response for input $x(t) = e^{-t}u(t)$			
13. A)	Derive the Fourier transform of a reatenable sules of width a and	CO3	L2	10M
13. A)	Derive the Fourier transform of a rectangular pulse of width τ and	CO3	LZ	10101
	amplitude A. Discuss the resulting magnitude and phase spectrum. OR			
B)	State Parseval's theorem for the DTFT and the DFT.	CO3	L2	10M
L)	batter a decrease in control and the Diri.	003	114	1 0141

14. A)	Find the impulse and step response for the system $H(s) = \frac{5}{s^2 + 4s + 5}$	CO4	L3	10M	
B)	Find the Z Transform of following Sequences $i(u(n)-u(n-4))$ ii) $u(-n)-u(-n-3)$ iii) $u(2-n)-u(-2-n)$	CO4	L3	10M	
15. A)	Find the Nyquist rate and the Nyquist interval for the following signals i)x(t) = $-10\sin 40\pi t \cos 300\pi t$ ii) x(t) = $rect(300t)$ iii) x(t) = $sinc(100 \pi t) + sinc(400 \pi t)$	CO5	L3	10M	
OR					
B)	State and prove the sampling theorem for low pass signals.	CO5	L2	10M	