ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July - 2024

PROBABILITY AND STATISTICS (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours Max. Marks: 75

Section – A (Short Answer type questions)						
Ans	Course	B.T	Mark			
1	TO CO TO 11 19 1 4 19 14 11 1 1 1 1	Outcome	Level	27.6		
1.	Define i) Equally likely events ii) Mutually exclusive events	CO1	L1	2M		
2.	If A & B are any two events and $A \subset B$ then prove that $P(A) \leq P(B)$	CO1	L2	3M		
3.	The mean and variance of a binomial distribution are 6 & 3 respectively find	CO2	L2	2M		
	the mode of the binomial distribution					
4.	If X is a Poisson variate such that $p(x=0) = p(x=1) = K$. Determine K.	CO2	L1	3M		
5.	Find population correction factor if n =5 and N=30	CO3	L1	2M		
6.	Define type II error.	CO3	L1	3M		
7.	Find $F_{0.01}$ (24,19)	CO4	L2	2M		
8.	Define the principles of design of experiments	CO4	L1	3M		
9.			L2	2M		
9.						
	0.3 0.7 0 0 0.2 0.4 0.1 0.3 Is this matrix irreducible?					
4.0						
10.	Find periodic and aperiodic states in each of the following transition	CO5	L2	3M		
	probability matrices.					
	$\begin{bmatrix} 1 & 3 \end{bmatrix}$					

i)	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	¹ ₀]	ii	$\begin{bmatrix} \frac{1}{4} \\ \frac{1}{2} \end{bmatrix}$	3 4 1 2
----	--	-----------------------------	----	--	------------------

Section B (Essay Questions) Answer all questions, each question carries equal marks. (5 X 10M = 50M)								
11. A, B, C are aiming to shoot a balloon. A will succeed 4 times out of 5 attempts.			L3	10M				
A)	The chance of B to shoot the balloon is 3 out of 4 and that of C is 2 out of 3. If the three aim the balloon simultaneously then find the probability that at least two of them hit the balloon.	CO1	L3	TOIVI				
	OR							
B)	A product is assembled from 3 components X, Y, Z. the probability of these components being defective is 0.01, 0.02, 0.05 respectively. What is the probability that the assembled product will not be defective?	CO1	L3	10M				

12. The probability density function of a variable 'x' is A)

X	0	1	2	3	4	5	6
P(x)	k	3k	5k	7k	9k	11k	13k

Find (i) 'k' (ii) p(x < 4) (iii) $p(3 < x \le 6)$ iv) Mean v) Variance.

L3

10M

CO₂

B)	OR It has been found that 2% of the tools produced by a certain machine are defective what is the probability that in a shipment of 400 such tools	CO2	L3	10M
	i) 3% or more ii) 2% or less will prove defective			
13. A)	Random samples of 400 men and 600 women were asked whether they would like to have a flyover near the residence, 200 men and 325 women were in favor of the proposal. Test the hypothesis that proportions of men and women in favor of the proposal are same, at 5% level	CO3	L3	10M
B)	OR The means of two large sample of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of S.D 2.5 inches.	CO3	L3	10M
14. A)	Use F test to test the significance difference variances of two diets. At 5% level of significance.	CO4	L3	10M
	DietA 25 32 30 34 24 14 32 24 30 31 35 25 - - - DietB 44 34 22 10 47 31 40 30 32 35 18 21 35 29 22			
B)	Give the complete statistical analysis of C. R. D.	CO4	L3	10M
15. A)	Suppose that the probability of a dry (state 0) follows a rainy day (state 1) is $1/3$, and probability of a rainy day is $1/2$. Then we have a two state markov chain such that $P_{10}=1/3$ are $P_{01}=1/2$ then find the transition probability matrix.	CO5	L3	10M
B)	A fair die is tossed repeatedly. If X_n denotes the maximum of the numbers occurring in the first n tosses, find the transition probability matrix P of the Markov chain $\{X_n\}$. Find also P^2 and $P(X_2=6)$.	CO5	L3	10M