Max. Marks: 75

Gauss-Jordan method.

ANURAG Engineering College

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, Jan/Feb-2024

MATHEMATICS – I (COMMON TO ALL BRANCHES)

Time: 3 Hours

	Section – A (Short Answer type questions)	(25 Marks)		
	Answer All Questions	Course Outcome	B.T Level	Marks
1.	State Cauchy's mean value theorem.	CO1	L2	2M
2.	Verify Lagrange's mean value theorem for $f(x) = log_e x$ in [1, e].	CO1	L2	3M
3.	Define normal form of a matrix and give example.	CO2	L1	2M
4.	Find the value of 'k' if the rank of the matrix A is 2	CO2	L1	3M
	where $A = \begin{bmatrix} 1 & 2 & 7 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$.			
5.	If $\lambda^3 + \lambda^2 - 21\lambda - 45 = 0$ is the characteristic equation of matrix A find det(A).	CO3	L2	2M
6.	Let A be a square matrix of order 3 with Eigen values 2,2 and 3 and	CO3	L2	3M
	A is diagonalizable then find rank of (A-2I).			
7.	Form the differential equation by eliminating the arbitrary constant $y^2 = (x - c)^2$.	CO4	L2	2M
8.	Define Orthogonal Trajectories in Cartesian co-ordinates	CO4	L1	3M
9.	Find the general solution of f(D)y=0	CO5	L1	2M
10.	Solve $(D^2 - 4D + 13)y = e^{2x}$.	CO5	L2	3M
	Section B (Essay Questions)			
Answe	r all questions, each question carries equal marks.	(5	X 10M	=50M)
11. A)	Prove that $\frac{\pi}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}$ using suitable mean value	CO1	L3	10M
	theorem.			
B)	Verify Rolle's theorem for the function $f(x) = log\left\{\frac{x^2 + ab}{x(a+b)}\right\}$ in	CO1	L3	10M
	[a, b] where a>0, b>0.			
12. A)	r10 -2 3 0 ₁	CO2	L3	10M
12.11)	Reduce the matrix $\begin{bmatrix} 10 & -2 & 3 & 0 \\ 2 & 10 & 2 & 4 \\ -1 & -2 & 10 & 1 \\ 2 & 3 & 4 & 9 \end{bmatrix}$ to echelon form and hence	002	20	10112
	find it's rank.			
	OR			
B)	$\begin{bmatrix} -1 & -3 & 3 & -1 \\ & & & & 1 \end{bmatrix}$	CO2	L3	10 M
	Find the inverse of the matrix $A = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \end{bmatrix}$ using			
	2-1 1 0 13			

- 13. A) Find Eigen values and Eigen vectors of $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$. CO3 L3 10M
 - OR
 - B) State Cayley-Hamilton theorem and verify the Cayley-Hamilton for CO3 L3 10M the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.
- 14. A) Solve $(x^2 y^2)dx = 2xy dy$. CO4 L3 10M

 OR

 B) A body kept in air with temperature $25^{\circ}C$ cool from $140^{\circ}C$ to $80^{\circ}C$ CO4 L3 10M in 20 minutes. Find when the body cools down to $35^{\circ}C$.
- 15. A) Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{2x}$. CO5 L3 10M

 OR
 - B) A particle is executing simple harmonic motion of period T about a CO5 L3 10M centre O and it passes through position P (OP=b) with velocity v in the direction OP. Show that the time that elapses before it returns to $P \frac{T}{\pi} T a n^{-1} \frac{vT}{2\pi b}$.