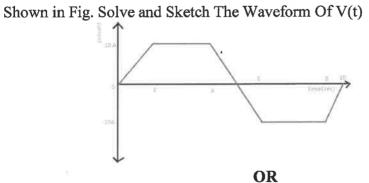
ANURAG Engineering College

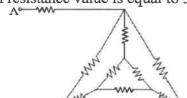

(An Autonomous Institution)

I B.Tech I Semester Supplementary Examinations, June/July-2024

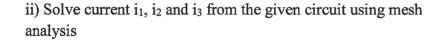
ELECTRICAL CIRCUITS (COMMON TO EEE & ECE)

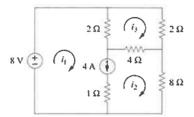
Time: 3 Hours

Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks
1.	What are the properties of an inductor and capacitor?	CO1	Level L1	2M
2.	Find the Equivalent Resistance Req from the given circuit	CO1	L1	3M
	$ \begin{array}{c c} 4\Omega & 1\Omega \\ \hline & 2\Omega \\ \hline & 8\Omega \\ \hline & 6\Omega & 3\Omega \end{array} $			
3.	What is MMF, Magnetic flux, Reluctance?	CO2	L1	2M
4.	What is Composite magnetic circuit? What are the uses of Dot convention?	CO2	L1	3M
5.	Define form factor of a periodic sine wave form.	CO3	L1	2M
6.	Define reactance, impedance, susceptance and admittance	CO3	L1	3M
7.	Draw the Locus diagram of series RC circuit with varying resistance R	CO4	L1	2M
8.	Explain concept of bandwidth and quality factor	CO4	L1	3M
9.	State Norton's theorem	CO5	L1	2M
10.	State Maximum power transfer theorem	CO5	L1	3M
Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		(5 x 10M =	= 50M)
11. A)	A Pure Inductance Of 3mh Carries A Current Of The Waveform	CO1	L3	10M



Question Paper Code: R15A11EE01

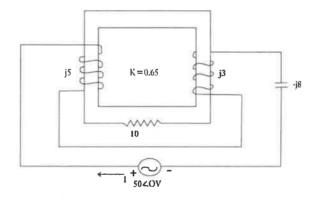

B) i) Find the equivalent resistance across AB for the circuit shown in below Figure. Each resistance value is equal to 3Ω



L2 5M

L3 5M CO₁

12. A) Explain the concept of self and mutual inductance. Relate coefficient of coupling and self, mutual inductance.


CO₂

L2 10M

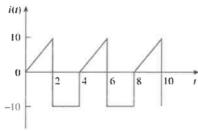
- What is a series magnetic circuit? Sketch the dotted equivalent circuit for the coupled coils shown in figure and find the current I?

CO₂

L1 10M

13. A) Explain the steady state analysis of RC parallel circuit with sinusoidal input

CO₃

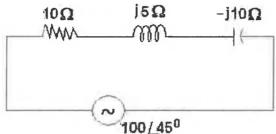

L2

10M

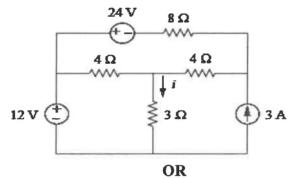
- OR
- B) i) Solve the average and rms value for the given waveform

CO₃

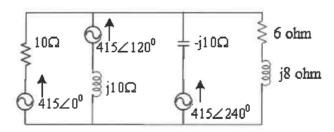
L3 [5+5]M


ii) The circuit, having two impedances of $Z_1 = (8 + j15) \Omega$ and $Z_2 =$ $(6-j8) \Omega$ in parallel, is connected to a single-phase ac supply and the current drawn is 10 A. Solve each branch current, both in magnitude and phase, and also the supply voltage.

10M


14. A) Explain the Locus Diagram of parallel RC Circuit with varying CO4 L2 10M Resistance 'R'.

OR


B) The circuit shown in the figure. Solve (i) resonant frequency (ii) CO4 L3 current at resonance (iii) voltage across L and C at resonance (iv) Q factor.

15. A) For the circuit given below Figure, use superposition theorem to CO5 L3 10M Solve current I flowing through 3Ω resistor.

B) State and Explain Milliman's Theorem. Find the current flowing CO5 L2 10M (6+j8) Ω impedance using Milliman's Theorem

