ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024 MATHEMATICS - III

(COMMON TO CIVIL & MECH)

Time:	3 Hours	Max. Marks: 75			
Section – A (Short Answer type questions) Answer All Questions			(10 B.T Level	Marks) Marks	
1.	Perform two iterations to find a positive root of the equation $x^3 - 2x - 5 = 0$ using bisection method.	Outcome CO1	L1	2M	
2.		CO1	L2	3M	
3.	Prove that $(1+\Delta)(1-\nabla)=1$	CO2	L2	2M	
4.	Find the missing term in the following table: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO2	L1	3M	
5.	Write the formula for Simpson's 3/8 rule.	CO3	L1	2M	
6.	Fit a straight line of the form $y = ax + b$ for the data below: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CO3	L1	3M	
7.	Using Picard's method, find a solution of $\frac{dy}{dx} = 1 + xy$, $y(0) = 0$	CO4	L2	2M	
8.	upto the second approximation. State Adam's predictor-corrector formulae for solving the	CO4	L1	3M	
	differential equation $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$				
9.	Form the partial differential equation from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	CO5	L2	2M	
10.	Solve the partial differential equation $yq - xp = z$	CO5	L2	3M	
	Section B (Essay Questions)				
Answe	r all questions, each question carries equal marks.	(5	X 10M	,	
11. A)	Find the real root of the equation $x \log_{10} x = 1.2$ by regula-falsi method correct to four decimal places.	CO1	L3	10M	
70.	OR	001	т.о.	103.6	
В)	Solve the system of equations by Gauss-Seidel method: 10x+2y+z=9; $2x+20y-2z=-44$; $-2x+3y+10z=22$	CO1	L3	10M	
12. A)	From the following table, find the value of $e^{1.17}$ using Gauss's forward formula:	CO2	L3	10M	
	x 1.00 1.05 1.10 1.15 1.20 1.25 1.30 ex 2.7183 2.8577 3.0042 3.1582 3.3201 3.4903 3.6693				
B)	Find the polynomial f(x) and hence find f(3) using Lagrange's interpolation formula for the data:	CO2	L3	10M	
	x 0 1 2 5				

2 3 12 147

13. A)	Compute $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal and Simpson's rule with h =	CO3	L3	10M
	0.125.			

OR

B)	Fit a second d	eoree nolv	momi	al of	the fo	rm v	= a +	$-bx + cx^2$ for the	CO3	1.3	10M
υ,	The discooning di	ogree per	IIOIIII	ui Oi	tile ic	1111 9	ш.	DA OA IOI WIO	005	110	10111
	data:										
	aatu.							· · ·			
		w 1	2	2	1	5	6				

х	1	2	3	4	5	6
у	2.4	3.1	3.5	4.2	5.0	6.0

14. A) Using Euler's modified formula, find an approximate value of y CO4 L3 10M when
$$x = 0.2$$
 in two steps, given that $\frac{dy}{dx} = x^2 + y$, $y(0) = 1$.

OF

B) Using Runge-Kutta fourth order formula, compute y at x = 0.2 and CO4 L3 10M 0.4 given that
$$\frac{dy}{dx} = x - y^2$$
, $y(0) = 0$.

15. A) i) Solve
$$p(1+q) = qz$$
 CO5 L3 5M 5M

OR

B)	By the method of separation of variables, find the solution of the	CO5	L3	10M
	equation $4\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$, $u(0, y) = e^{-5y}$			