ANURAG Engineering College

(An Autonomous Institution)

II B.Tech. I Semester Supplementary Examinations, June/July - 2024

MATHEMATICS-III (COMMON TO CIVIL & MECH)

Time: 3 Hours Max. Marks: 75

	Section – A (Short Answer type questions) r All Questions	Course Outcome	(25 B.T Level	Marks) Marks
1. 2.	If $x^2 - x - 1 = 0$ by bisection method first two approximations are 1	CO1 CO1	L1 L2	2M 3M
2	and 2 then the third approximation is?	COA	т 1	23.6
3.	State Lagrange's Interpolation formula. Evaluate $\Delta^2 \cos 2x$	CO2 CO2	L1	2M 3M
4.		CO2	L2 L1	3M 2M
5. 6.	State the formula for Trapezoidal rule. State the formula for Simson's 1/3 rule.	CO3	L1	3M
7.	write Mathematical steps of Picard's method.	CO3	L1	2M
	-			
8.	Write the Runge- kutta formula to find solution of ordinary differential equation	CO4	L1	3M
9.	Form the PDE by eliminating the constants c and d from $z=(x+c)(y+d)$.	CO5	L2	2M
10.	Find $\frac{\partial z}{\partial x}$ for $z = x^3 - 2xy^2 - 4y^3$.	CO5	L2	3M
Answer 11. A)	Section B (Essay Questions) rall questions, each question carries equal marks. Find a real root of $\cos x = xe^x$ by Regula Falsi method correct to five decimal places	CO1	X 10M = L3	= 50M) 10M
B)	OR Sove the following equation by Gauss seidal method	CO1	L3	10M
2)	2x + y + z = 10,3x + 2y + 3z = 18, x + 4y + 9z = 16	-		2 0 2 1 2
12. A)	Find y(1.6) using Newton's forward difference formula from the table	CO2	L3	10M
	X 1 1.4 1.8 2.2 y 3.49 4.82 5.96 6.5 OR			
В)	Find y(10) using Lagrange's interpolation formula: x 5 6 9 11 y 12 13 14 16	CO2	L3	10M
13. A)	Determine the constants a and b by the method of least squares such that y=ae ^{bx} .	CO3	L3	10M
	x 1 2 3 4 5			

10

В)	Evaluate $\int_0^2 \frac{x^2}{1+x^3} dx$ using simpson's $\frac{1}{3}$ rule with h=0.2.	CO3	L3	10M
14. A)	Solve $y^1 = y^2 + x$, given $y(1) = 0$. Find $y(1.1)$ and $y(1.2)$ by Taylor's series method	CO4	L3	10M
B)	Use Runge-kutta method to evaluate $y(0.1)$ and $y(0.2)$ given that $y^{I} = x+y$, $y(0)=1$.	CO4	L3	10M
15. A)	Solve q+xp=p ² by Charpit's Method OR	CO5	L3	10M
B)	Solution of a PDE by the method of separation fo variables u_{xx} - u =0	CO5	L3	10M