ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024 PROBABILITY THEORY AND STOCHASTIC PROCESS (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time:	Time: 3 Hours			Max. Marks: 75		
	Section – A (Short Answer type questions)		(2	5 Marks)		
	All Questions	Course	B.T	Marks		
11115	THE AMOUNTAIN	Outcome	Level			
1.	Define probability, set and sample spaces.	CO1	L1	2M		
2.	Write the axioms of probability.	CO1	L1	3M		
	-	CO2	L2	2M		
3.	Explain about random variable and give example. What is Variance and Skew.	CO2	L1	3M		
4.		CO3	L2	2M		
5.	Explain Joint Distribution and list the Properties.	CO3	L2 L2	3M		
6.	State central limit theorem for the case of equal distributions.					
7.	Define Gaussian random process.	CO4	L1	2M		
8.	Explain about mean-ergodic process.	CO4	L2	3M		
9.	Define Autocorrelation Function and power spectral density.	CO5	L2	2M		
10.	Write any three properties of cross-power density spectrum.	CO5	L1	3M		
	Section B (Essay Questions)					
Answe	r all questions, each question carries equal marks.	(5	X 10M	=50M)		
11. A)		CO1	L2	10M		
11011)	OR					
B)	Discuss about joint and conditional probabilities in detail.	CO1	L3	10M		
D)	Discuss accur joint and concerns produced and accurate					
12. A)	Describe the binomial density and distribution function for case N=6	CO2	L2	10M		
12. 11)	and p=0.25.	002		1 01.1		
	OR					
D)	OK .	CO2	L3	10M		
B)	The descript function of a random variable Y is	COZ	L 3	10111		
	The density function of a random variable X is					
	$f_{X}(x) = \begin{cases} 5e^{-5x}, & 0 \le x \le \infty \\ 0 & elsewhere \end{cases}$					
	Find: (i) $E[X]$. (ii) $E[(X-1)^2]$.					
13. A)	Differentiate between the marginal distribution functions, conditional	CO3	L3	10M		
	distribution functions and densities.					
	OR					
B)	Discuss about Function of joint random variables, Joint Moments	CO3	L2	10M		
ŕ	about Origin and Joint central moments.					
	-					
14. A)	Classify random processes and A random process $X(t) = A\cos(\omega o t) +$	CO4	L2	10M		
	B sin(ωot) where ωo is a constant and A, B are uncorrelated zero mean					
	random variables with same variances. Check whether X(t) is WSS or					
	not?					
	OP					

B)	Explain the concept of time average and ergodicity. Write the conditions for a random process to be ergodic in mean and autocorrelation.	CO4	L2	10M
15. A)	Derive the relation between cross power density spectrum and cross correlation function of a random process. OR	CO5	L3	10M
B)	Discus Power Spectrum with its Properties and derive Relationship between Power Spectrum and Autocorrelation Function,	CO5	L3	10M