ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July – 2024 PROBABILITY THEORY AND STOCHASTIC PROCESS (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 75

Time: 3	Hours	IVIA	A. WIAII	13. /3	
	Section – A (Short Answer type questions) er All Questions Course		(25 Marks) B.T Marks		
		Outcome	Level		
1.	List the Axioms of Probability.	CO1	L1	2M	
2.	· · · · · · · · · · · · · · · · · · ·	CO1	L2	3M	
3.	Write the conditions for a function to be a random variable.	CO2	L1	2M	
4.	Define central moment, variance and skew.	CO2	L1	3M	
5.	Write two properties of joint distribution function of random variables.	CO3	L1	2M	
6.	State Central Limit Theorem.	CO3	L1	3M	
7.	Define autocorrelation function of a random process.	CO4	L1	2M	
8.	What is a WSS random process.	CO4	L1	3M	
9.	What is the expression for power spectral density.	CO5	L1	2M	
10.	State wiener-Khinchin relation.	CO5	L1	3M	
	Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		(5.)	$(5 \times 10M = 50M)$		
11. A)		CO1	L2	5M 5M	
B)	i) Find the probability of the card being either red or a king when one card is drawn from a regular deck of 52 cards	CO1	L2	5M	
	ii) Given $P(A) = 1/3$, $P(B) = 1/2$, $P(A \cap B) = 1/5$, then find $P(AUB), P(A/B), P(B/A)$			5M	
12. A)	$f_X(x) = 5e^{-5x}$ $0 \le x \le \infty$ = 0 else where Find i) $E(X)$ ii) $E[(X-1)^2]$.	CO2	L2	10M	
	OR				
B)	i) Define probality density function and prove its propertiesii) Find mean and variance of uniform distribution function	CO2	L2	5M 5M	
13. A)	i) State and prove the properties of joint characteristic function. ii) The joint density function of random variables X and Y is . $f_{XY}(x,y) = 8xy 0 < x < 1, 0 < y < x$ Find the conditional density functions $f(x/y)$ and $f(y/x)$.	CO3	L2	5M 5M	
B)	State and prove any four properties of joint characteristic function.	CO3	L2	10M	

14. A)	Define autocorrelation function of a random process. Write properties of auto correlation function of a WSS process and prove any three of them.	CO4	L2	10M
	OR			
В)	A random process is given as $X(t) = At$, where A is a uniformly distributed random variable on $(0,2)$. Find whether $X(t)$ is wide sense stationary or not.	CO4	L3	10M
15. A)	Define cross power density spectrum and state and prove its properties	CO5	L2	10M
	OR			
B)	Develop the relationship between cross-power spectrum and cross-correlation function.	CO5	L3	10M