ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, Jan/Feb-2024 MATHEMATICS - IV

(COMMON TO EEE & ECE)

(COMMON TO EEE & ECE)				
Time: 3 Hours Max. Marks: 75				
Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(10 B.T Level	Marks) Marks
1. 2.	Write Fourier sine and Fourier Cosine Integrals. Show that $F_s \{ x f(x) \} = -\frac{d}{ds} [F_E(P)]$	CO1 CO1	L1 L2	2M 3M
	Write Cauchy's Riemann equations in Cartesian form and Polar form	CO2	L2	2M
4.	m	CO2	L1	3M
	Define Isolated singularity.	CO3	L1	2M
6.	Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path y=x	CO3	L1	3M
7.	State Cauchy's residue theorem.	CO4	L2	2M
8.	Find the residue of $f(z) = \frac{z^2}{z^2 + a^2}$ at $z = ia$	CO4	L1	3M
9.	Define conformal mapping.	CO5	L2	2M
10.	Find fixed points of the transformation $W = \frac{6z-9}{z}$	CO5	L2	3M
Section B (Essay Questions)				
Answer all questions, each question carries equal marks.		•	X 10M	
11. A)	Find cosine transform of (x) defined by $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$	CO1	L3	10M
	OR			
B)	Find the Inverse Fourier Cosine transform of Find p	CO1	L3	10M
12. A)	Show that the $f(x) = \sqrt{ xy }$ is not analytic at the origin although	CO2	L3	10M
	Cauchy Riemann equations are satisfied at that point. OR			402.5
В)	Show that $U(x,y)=x^3-3xy^2$ is harmonic and find its harmonic conjugate and the corresponding analytic function $f(z)$ in terms of z.	CO2	L3	10M
13. A)	Evaluate $\int_{(0,0)}^{(1,1)} (3x^2 + 4xy + ix^2) dz$ along the path y=x ²	CO3	L3	10M
	OR	~~~	7.0	103.5
В).	Obtain the Taylor's Series to represent the function $f(z) = \frac{e^z}{z(z+1)}$ about at $ z = 2$	CO3	L3	10M
	1 1			
14. A)	Evaluate $\int_{c} \frac{dz}{(z^2+4)^2}$ where C is circle $ z-i =2$	CO4	L3	10M
	OR			463.5
B)	Show that $\int_0^{\pi} \frac{d\theta}{a + b \cos \theta} = \frac{\pi}{\sqrt{a^2 - b^2}} (a > b > 0)$	CO4	L3	10M

15. A) Under the transformation $w = \frac{1}{z}$ find the image of the circle |z - 2i|CO5 L3 10M OR

B) Find the bilinear transformation which maps the points (-i,0,i) into CO5 L3 10M

the points (-1,i,1) respectively.