ANURAG Engineering College

(An Autonomous Institution)

II B.Tech I Semester Supplementary Examinations, June/July - 2024

MATHEMATICS – IV (COMMON TO EEE & ECE)

Time: 3 Hours			Max. Marks: 75		
Section – A (Short Answer type questions) Answer All Questions		Course Outcome	(25 B.T Level	Marks) Marks	
1.	Write Fourier sine integral formulae.	CO1	L1	2M	
2.	Compute the finite Fourier sine transform of $f(x) = x(\pi - x)$, in $0 < x < \pi$.	CO1	L1	3M	
3.	Write Cauchy Riemann equations in polar coordinates.	CO2	L1	2M	
4.	Find k such that $u(x, y) = x^3 + 3kxy^2$ may be Harmonic.	CO2	L1	3M	
5.	Define essential singularity.	CO3	L1	2M	
6.	Expand e^z as Taylors series about z=1.	CO3	L1	3M	
7.	State Residue theorem.	CO4	L1	2M	
8.	Find the residue of $f(z) = \frac{z^2}{(z-2)(z-3)}$ at $z=3$.	CO4	L1	3M	
9.	Define conformal mapping.	CO5	L1	2M	
10.	Find the fixed points of the mapping $w = (5z+4)/(3z-7)$	CO5	L1	3M	
Section B (Essay Questions)					
Answer all questions, each question carries equal marks.		•	X 10M =	,	
11. A)	Find the Fourier transform of $f(x) = 1 - x^2$, $if x \le 1$ = 0, $if x > 1$. Hence show that $\int_0^\infty \frac{x \cos x - \sin x}{x^3} dx = \frac{\pi}{4}$	CO1	L3	10M	
B)	Find the Fourier sine transform of e^{-ax} , $a > 0$ and hence deduce the	CO1	L2	10M	
	inversion formula.				
12. A)	Prove that the function f(z) defined by $f(z) = \frac{x^3(i+1) - y^3(1-i)}{x^2 + y^2}$	CO2	L3	10M	
	$(z \neq 0)$, $f(0) = 0$ is continuous and the Cauchy-Riemann equations are satisfied at origin.				
	OR				
B)	Verify that $u = e^x \cos y$ is harmonic in the complex plane and find	CO2	L2	10M	
	a conjugate harmonic function.				
13. A)	Evaluate using Cauchy's theorem $\int_{C} \frac{z^{3}e^{-z}}{(z-1)^{3}} dz \text{ where C is } z-1 = \frac{1}{2}$	CO3	L3	10M	

OR

B) Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 in the region $1 < |z| < 2$.

14. A) Evaluate
$$\int_{c} \frac{4-3z}{z(z-1)(z-2)} dz$$
 where c is the circle $|z| = \frac{3}{2}$

OR

B) Show that
$$\int_{0}^{2\pi} \frac{d\theta}{a + b\cos\theta} = \frac{2\pi}{\sqrt{a^2 - b^2}}$$
 (a>b>0)

OR

B) Find the bilinear transformation that maps the points
$$z_1=1$$
, $z_2=i$ $z_3=$ CO5 L3 10M -1 onto points $w_1=i$, $w_2=0$ $w_3=-i$