## **ANURAG Engineering College**

(An Autonomous Institution)

## III B.Tech I Semester Supplementary Examinations, Dec-2023/Jan-2024 FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE AND ENGINEERING)

Time: 3 Hours Max.Marks:75

| Section – A (Short Answer type questions) Answer All Questions |                                                                                                                                                                   | Course<br>Outcome | (25)<br>B.T<br>Level | Marks)<br>Marks |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|-----------------|
| 1.                                                             | Define NFA with an example.                                                                                                                                       | CO1               | L1                   | 2M              |
| 2.                                                             | What is an extended transition function? Explain briefly.                                                                                                         | CO1               | L2                   | 3M              |
| 3.                                                             | Define Regular Expression.                                                                                                                                        | CO2               | L1                   | 2M              |
| 4.                                                             | Prove $(rs+r)*r=r(sr+r)*$                                                                                                                                         | CO2               | L2                   | 3M              |
| 5.                                                             | Define the grammar and list the types of grammar.                                                                                                                 | CO3               | L1                   | 2M              |
| 6.                                                             | Explain the concept of push down automata.                                                                                                                        | CO3               | L2                   | 3 <b>M</b>      |
| 7.                                                             | Define Pumping lemma for the CFL.                                                                                                                                 | CO4               | L1                   | 2M              |
| 8.                                                             | Discuss the decision properties of the CFL's.                                                                                                                     | CO4               | L2                   | 3M              |
| 9.                                                             | Write about undecidable problems concerning regular expressions.                                                                                                  | CO5               | L1                   | 2M              |
| 10.                                                            |                                                                                                                                                                   | CO5               | L2                   | 3M              |
|                                                                | Section B (Essay Questions)                                                                                                                                       |                   |                      |                 |
| Answei                                                         | r all questions, each question carries equal marks.                                                                                                               | (5)               | x 10M =              | 50M)            |
|                                                                | Construct DFA to accept the language of all strings of even numbers of a's & numbers of b's divisible by three over alphabet $\Sigma = \{a,b\}$ or $(a+b)^*$ .    | CO1               | L3                   | 10M             |
|                                                                | OR                                                                                                                                                                |                   |                      |                 |
| B)                                                             | Design Finite automaton for language consists of consecutively even number of 0's and even number of 1's.                                                         | CO1               | L3                   | 10M             |
| 12. A)                                                         | State and prove pumping lemma for regular languages. Apply pumping lemma for following language and prove that it is not regular $L=\{a^mb^n \mid gcd(m,n)=1\}$ . | CO2               | L3                   | 10M             |
|                                                                | OR                                                                                                                                                                |                   |                      |                 |
| B)                                                             | Prove that $L = \{a^{n!}   n \ge 1\}$ is not regular                                                                                                              | CO2               | L2                   | 10M             |
| 13. A)                                                         | Explain the process of simplifying the grammar with example and left most and right most derivations with examples.  OR                                           | CO3               | L3                   | 10M             |
| B)                                                             | Construct a PDA which accepts i) $L=\{a^3b^nc^n n\geq 0\}$ ii) $L=\{a^pb^qc^m p+m=q\}$                                                                            | CO3               | L2                   | 10M             |
| 14. A)                                                         | List and explain in detail about the closure properties of Context<br>Free Languages                                                                              | CO4               | L3                   | 10M             |
| В)                                                             | OR  Construct the following CFG to CNF S → ASA   aBA S→ B S                                                                                                       | CO4               | L2                   | 10M             |
|                                                                | B → b   E                                                                                                                                                         |                   |                      |                 |

| 15. A) | Design a Turing machine to compute the following. i) Division of Two integers                         | CO5 | L2 | 10M |
|--------|-------------------------------------------------------------------------------------------------------|-----|----|-----|
|        | ii) 2's complement of a given binary number                                                           |     |    |     |
|        | OR                                                                                                    |     |    |     |
| B)     | What are P an NP problems? Give at least four problems that can be classified as NP problem. Justify. | CO5 | L3 | 10M |