ANURAG Engineering College

(An Autonomous Institution)

III B.Tech. I Semester Supplementary Examinations, June/July – 2024 CONTROL SYSTEMS ENGINEERING

(ELECTRONICS AND COMMUNICATION ENGINEERING)

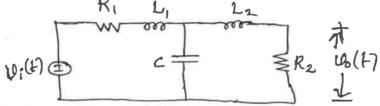
Time: 3 Hours	Ma	Max. Marks: 75		
Section – A (Short Answer type questions) Answer All Questions	Course Outcome	(25 B.T Level	Marks) Marks	
1. Define transfer function. What are its limitations?	CO1	L1	2M	
2. Write the importance of Signal Flow Graph in control systems.	CO1	L2	3M	
3. Distinguish between type and order of the system.	CO2	L2	2M	
4. What are the effects of integral control action?	CO2	L2	3M	
5. What is the effect of adding poles to G(s) H(s) on the root loci?	CO3	L1	2M	
6. Write limitations of Routh's stability.	CO3	L2	3M	
7. Draw the pole zero location of lag compensator.	CO4	L2	2M	
8. Define phase margin and gain margin.	CO4	L2	3M	
9. Define Observability.	CO5	L2	2M	
10. Write Properties of State Transition Matrix.	CO5	L2	3M	
Section B (Essay Questions)				
Answer all questions, each question carries equal marks.	•	10M =	,	
i) What are the effects of feed back in control system?	CO1	L2	4M	
ii) Find the transfer function of a given signal flow graph?		L3	6M	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
OR				
B) i) Distinguish between Open loop control system and closed loop	CO1	L2	4M	
control system?			11/1	
ii) For the given electrical system shown in figure, find the transfer function?		L3	6M	
$ \begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ \end{array} $				
12. i) Determine the response of the critically damped second order	er CO2	L3	4M	
A) system for unit step input?ii) Obtain the response of a unity feedback system whose open loo	ט		6M	
transfer function is $G(S) = \frac{4}{S(S+5)}$, for unit step input?	г		02.2	
OR				
B) Explain the time domain specifications?	CO2	L3	10M	

13. Determine the stability of given characteristic equation, CO3 L3 10M A) $S^7+6S^6+24S^5+S^4+2S^3+3S^2+S+2=0$

OR

- B) A Unity feedback control System has an open loop transfer function CO3 L3 10M $G(s) = \frac{K}{s*(s2+4s+13)}$ sketch the root locus?
- 14. Draw the Nyquist plot for the system whose open loop transfer function CO4 L3 10M
- A) is $G(s) = \frac{K}{S(S-2)(S-10)}$. Determine the range of K for which closed loop system is stable.

OR


- B) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{1}{S(1+S)(1+2S)}$. Sketch the polar plot and determine the gain margin and phase margin.
- 15. Find the transfer function of the given system.

CO5 L3

10M

A) $X' = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X + \begin{bmatrix} 0 \\ 5 \end{bmatrix} U;$ $Y = \begin{bmatrix} 0 & 1 \end{bmatrix} X;$ $X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

B) R_1 L_2 CO5 L3 10M

Find the state model of the given network.