Max. Marks: 75

ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, Jan/Feb-2024 MATHEMATICS – II

(COMMON TO ALL BRANCHES)

Time: 3 Hours

Time.	3 Hours	1416	AV. IATORI	KS. /3		
	Section – A (Short Answer type questions) Answer All Questions	Course Outcome	(25 B.T Level	Marks) Marks		
1. 2.	State convolution Theorem Find $L\{\cosh^2 2t\}$	CO1 CO1	L1 L2	2M 3M		
3.	Find the value of $\Gamma\left(\frac{9}{2}\right)$	CO2	L2	2M		
4.	Find the value of $\int_{0}^{\infty} e^{-x^2} dx$	CO2	L2	3M		
5.	Evaluate $\int_{y=0}^{\frac{\pi}{2}} \int_{x=-1}^{1} x^2 y^2 dx dy$	CO3	L2	2M		
6.	Find the divergence of the vector function $\overline{F} = 2x\overline{i} + 3xy\overline{j} - yz^2\overline{k}$ at (-1, 0, 2)	CO3	L2	3M		
7.		CO4	L1	2M		
8.	Find $\int_C \overline{F} d\overline{r}$ where $\overline{F} = 3xy\overline{i} - y^2\overline{j}$ and C is the curve $y = 2x^2$ from (0,	CO4	L2	3M		
9.	0) to $(1, 2)$ Write the formula for the Fourier series of Half range Sine series in $(0, \pi)$	CO5	L1	2M		
10.	Find the independent term in the Fourier series of $f(x) = x + x^2$ in $(-\pi, \pi)$	CO5	L2	3M		
Section B (Essay Questions)						
	all questions, each question carries equal marks.	•	X 10M	•		
11. A)	Find $L\left\{\frac{e^{-3t}\sin 2t}{t}\right\}$	CO1	L3	10M		
B)	Using Laplace Transforms, solve the differential equation	CO1	L3	10M		
	$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 2y = 5\sin t, y(0) = 0, y'(0) = 0$					
12. A)	Evaluate $\int_{0}^{2} x \left(8 - x^{3}\right)^{1/3} dx$	CO2	L3	10M		
B)	Evaluate $\int_{0}^{\pi/2} \sin^{7/2} \theta \cos^{5} \theta d\theta$	CO2	L3	10M		

13. A)	Change the order of integration and evaluate $\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$	CO3	L3	10M
	OR			
B)	Find the directional derivative of the scalar point function $\phi(x, y, z) = 4xy^2 + 2x^2yz$ at the point A(1, 2, 3) in the direction of the line AB where B = (5, 0, 4)	CO3	L3	10M
14, A)	Use Gauss Divergence Theorem to evaluate $\iint_{S} \overline{F}.\overline{n} ds$ where	CO4	L3	10M
	$\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$ and S is the surface bounded by the planes $x = 0$,			
	y = 0, $z = 0$ and $x + y + z = a$			
B)	Verify Green's theorem for $\iint_C (xy + y^2) dx + x^2 dy$ where C is bounded	CO4	L3	10M
	by $y = x$ and $y = x^2$			
15. A)	Obtain the Fourier series of $f(x) = \frac{\pi - x}{2}$ in $(0, 2\pi)$	CO5	L3	10M
B)	Find the Half range cosine series of $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$	CO5	L3	10M
	This the Half range cosine series of $f(x) = \begin{cases} \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$			