ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, June/July-2024

MATHEMATICS – II (COMMON TO ALL BRANCHES)

Time: 3 Hours		Max.Marks:75		
Section – A (Short Answer type questions)			(25	Marks)
Answer All Questions		Course Outcome	B.T Level	Marks
1.	Define Laplace transformation and explain its linear property.	CO1	L1	2M
2.	Find the Laplace transformation of $\frac{\cos at - \cos bt}{t} + t \sin at$.	CO1	L2	3M
3.	Show that $\beta(m,n) = \beta(n,m)$	CO2	L2	2M
4.	Evaluate $\int_0^\infty \sqrt[4]{x} e^{-\sqrt{x}} dx$.	CO2	 L1	3M
5.	Find div F and curl F of F = grad($x^3 + y^3 + z^3 - 3xyz$).	CO3	L2	2M
6.	Change the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy \ dx \ dy$ and evaluate the	CO3	L2	3M
7.	same. Find the work done in moving a particle in the force field $F = 3x^2i + (2xz - y)j + zk$ along the straight line from $(0,0,0)$ to $(2,1,3)$.	CO4	L2	2M
8.	Evaluate Green's theorem for $\int_{C}^{\square} [(xy + y^2)dx + x^2dy]$ where C is	CO4	L2	3M
9.	bounded the line $y = x$ and the curve $y = x^2$. State Dirichlet conditions for Fourier expansion of a function.	CO5	L1	2M
10.	Define even and odd function and Express $f(x) = x/2$, as a fourier series	CO5	L1	3M
10.	in the interval $(-\pi, \pi)$.	000	Di	5111
	Section B (Essay Questions)			
Answer all questions, each question carries equal marks.		(5	X 10M	= 50M)
11. A)	Using convolution theorem find the inverse Laplace transformation of	CO1	L3	10M
	$(s^2+1)(s^2+4)(s^2+9)$			
_,	OR	~~.		407.5
B)	Using Laplace Transformation solve the differential equation:	CO1	L3	10M
	$\frac{d^2y}{dt^2} + n^2y = a \sin{(nt + a)}, y = Dy = 0 \text{ at } t = 0.$			
12. A)	Show that $\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$	CO2	L3	10M
	· ,			
B)	Establish Dirichlet's theorem $\iiint_{V}^{\square} x^{l-1} y^{m-1} z^{n-1} dx dy dz =$	CO2	L3	10 M
	$\frac{\Gamma l \ \Gamma m \Gamma n}{\Gamma (l+m+n+1)}$, where V is the volume of the region $x \ge 0, y \ge 0, z \ge 0$			
	$\Gamma(1+m+n+1)$, where V is the volume of the region $k \ge 0, y \ge 0, z \ge 0$, and $0, 0 \le x + y + z \le 1$.			
13. A)	x^2 y^2 z^2	CO3	L2	10M
13. A)	Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	003	LL	1 0141
B)	Show that $\nabla^2 r^n = n(n+1)r^{n-2}$, where where $r = x i + y j + z k$, and	CO3	L3	10M
ŕ	$r = \sqrt{x^2 + y^2 + z^2}.$			

- 14. A) Verify Stokes theorem for the vector field $F = (2x y)i yz^2j y^2zk$ over the upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy-plane.
- CO₄
- L3 10M

- OR
- B) Verify Gauss Divergence theorem for $F = (x^2 yz)i + (y^2 zx)j +$ $(z^2 - xy)k$, taken over the parallelopiped $0 \le x \le a$, $0 \le y \le b$, $0 \le a$ $z \leq c$,
- CO₄
- L3 10M

- 15. A) Find a Fourier series to represent $f(x) = x x^2$, from $x = -\pi$ to $x = -\pi$
- 10M

10M

- CO₅

CO₅

L2

L3

- OR
- B) Obtain the half range cosine series for f(x) =kx, for $0 \le x \le l/2$ $\{k(l-x), for \ l/2 \le x \le l'\}$
 - And find the sum of the series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \infty$.