Max. Marks: 75

y = f(x)

ANURAG Engineering College

(An Autonomous Institution)

I B.Tech II Semester Supplementary Examinations, Jan/Feb-2024

MATHEMATICS – III (COMMON TO EEE, ECE & CSE)

Time: 3 Hours

I IIIIC.	Jilouis	171.	BEAR IVECE	123. / 5
	Section – A (Short Answer type questions) Answer All Questions	Course Outcome	(25 B.T Level	Marks) Marks
1.	Find the iterative formula for finding \sqrt{N} where N is a real number	CO1	L2	2M
2. 3.	using Newton-Raphson formula. Write first approximation formula for method of False Position. Write the formula for Lagrange's Interpolation.	CO1 CO2 CO2	L1 L1 L2	3M 2M 3M
4. 5.	Evaluate $\Delta^2(3e^x)$ Write the normal equations for fitting a straight-line $y = ax + b$ using the method of least squares.	CO3	L2	2M
6. 7.	State Newton's Cotes Quadrature formula. Solve $\frac{dy}{dx} = 1 + xy$, $y(0) = 1$ using Taylor's series method and find	CO3 CO4	L2 L2	3M 2M
8.	y(0.1). Write the formula of Adams-Bashforth Method to obtain the numerical solution of ordinary differential equation.	CO4	L2	3M
9.	Form the partial differential equation by eliminating the arbitrary constants from $z = (x-a)^2 + (y-b)^2$	CO5	L2	2M
10.	State the two-dimensional Laplace equation.	CO5	L2	3M
	Section B (Essay Questions)			
Answer 11. A)	r all questions, each question carries equal marks. Solve the system of equations by Jacobi's Iteration Method. 20x + y - 2z = 17; $3x + 20y - z = -18$; $2x-3y + 20z = 25$	CO1	X 10M L3	= 50M) 10M
B)	Find a real root of the equation $x^3 - x - 4 = 0$ using False position method.	CO1	L3	10M
12. A)	Using Gauss's backward interpolating formula find the value of $f(3.3)$ from the following table: x 1 2 3 4 5 y = $f(x)$ 15.30 15.10 15.00 14.50 14.00 OR	CO2	L3	10M
B)	Using Lagrange's Interpolation Formula, find f(2) for the following data.	CO2	L3	10M

105

Question Paper Code: R15A12HS02/R14A12HS02

13. A) Fit a second-degree polynomial to the following data by the method CO3 L3 10M of least squares:

X	0	1	2	3	4
У	1	1.8	1.3	2.5	6.3
1	1111		***	OD	

- B) Evaluate $\int_{0}^{2} e^{-x^{2}} dx$ using Simpson's rule taking h = 0.25
- Solve the differential equation $\frac{dy}{dx} = x^2 + y$, y(0) = 1 by Modified Euler's method and compute y(0.02) and y(0.04)
 - B) Obtain the values of y at x = 0.1, 0.2 using Runge Kutta method of CO4 L3 10M fourth order for the differential equation $\frac{dy}{dx} + y = 0$, y(0) = 1
- 15. A) Solve the partial differential equation $x(y^2 z^2) p y(z^2 + x^2) q = z(x^2 + y^2)$
 - B) Solve by the method of separation of variables $u_x = 2u_t + u$ where $u(x,0) = 6e^{-3x}$