Page 1 of 1

ANURAG Engineering College

(An Autonomous Institution)

I B.Tech. II Semester Supplementary Examinations, June/July – 2024 ELECTRONIC DEVICES AND CIRCUITS (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours Max. Marks: 75

11me:	3 Hours	IVI	ax. Iviai	K5. /3	
	Section – A (Short Answer type questions)			(25 Marks) B.T Marks	
Answe	r All Questions	Course Outcome	Level	MESTERS	
1	Defense visuals for the send DIV	CO1	Level L1	2M	
1.	Define ripple factor and PIV.			3M	
2.	Define drift and diffusion currents of a semiconductor.	CO1	L1		
3.	Define trans-conductance gm and drain resistance of a FET	CO2	L1	2M	
4.	Explain the base width modulation.	CO2	L2	3M	
5.	Explain the term Thermal runaway.	CO3	L1	2M	
6.	What are the essential conditions for biasing of a Transistor?	CO3	L2	3M	
7.	Draw the hybrid equivalent circuit for any one configuration	CO4	L2	2M	
8.	Write differences between FET and BJT.	CO4	L1	3M	
9.	What is Barkhausen criterian?	CO5	L1	2M	
10.	Classify different sinusoidal oscillators.	CO5	L2	3M	
	Section B (Essay Questions)				
Answe	r all questions, each question carries equal marks.	(5.2	X 10M :	= 50M)	
11. A)	Explain the operation of PN junction diode in forward and reverse bias regions. Draw the V-I characteristics of diode.	CO1	L3	10M	
D)	OR Draw the circuit diagram and explain the operation of full wave	CO1	L3	10M	
В)	rectifier using centre tap transformer and using bridge rectifier without centre tap transformer. Obtain the expression for peak inverse voltages of both.	COI	LJ	10101	
12. A)	Draw the circuit diagram of an NPN junction transistor in CE	CO2	L2	10M	
	configuration and describe its characteristics. OR				
B)	Explain the working of a depletion type MOSFET with a neat	CO2	L2	10M	
D)	construction diagram and its characteristics.				
13. A)	What is biasing? Explain the need of it. List out different types of	CO3	L2	10M	
,	biasing methods. OR				
D)		CO3	L3	6M	
В)	i) An npn transistor if β =50 is used in CE circuit with V_{cc} = 10V, R_c = 2K Ω . The bias is obtained by connecting 100k Ω resistor from	003	L 3	OIVI	
	collector to base. Find the quiescent point and stability factor. ii) Explain the concept of thermal runaway in detail.		L2	4M	
14 4)	Durantha anall giornal lavy fraguency h naramater model of CE CR	CO4	L3	10M	
14. A)	Draw the small signal low frequency h- parameter model of CE, CB, and CC configurations and compare voltage gain, current gain, input impedance, output impedance.	CO4	LJ	10141	
	OR	004	т 🔿	103.6	
B)	Explain the operation of UJT. Draw the characteristics and explain?	CO4	L2	10M	
			D	. 1 . 6 1	

15. A)	Explain RC phase shift oscillator. Derive the expression for frequency of oscillations.	CO5	L2	10M
	OR			
B)	An amplifier has voltage gain with feedback of 100.if the gain without feedback changes by 20% and the gain with feedback should not vary more than 2%, determine the values of open loop gain A and feedback ratio β .	CO5	L3	10M